Open PTC Agent

This notebook is a demo usage of PTC Agent.

Make sure you have installed the dependencies and configured the api keys in the .env file before running the notebook.

import asyncio
import nest_asyncio
from datetime import datetime
from dotenv import load_dotenv
load_dotenv(".env", override=True)
from utils import show_prompt, format_messages, print_agent_config, print_sandbox_tree, display_sandbox_images, display_result, export_sandbox_files, dump_messages
# Enable async in Jupyter
nest_asyncio.apply()
 
from IPython.display import Image, display
from src.agent import AgentConfig, PTCAgent
from src.ptc_core.session import SessionManager
 
# Load configuration (async)
config = await AgentConfig.load()
config.validate_api_keys()
 
%load_ext autoreload
%autoreload 2

Create the PTC Agent

# Create session with Daytona sandbox
core_config = config.to_core_config()
session = SessionManager.get_session("demo-notebook", core_config)
await session.initialize()
 
# Create the agent via PTCAgent
ptc_agent = PTCAgent(config)
agent = ptc_agent.create_agent(
    sandbox=session.sandbox,
    mcp_registry=session.mcp_registry,
    subagent_names=["research", "general-purpose"]
)
 
# Show the agent graph
display(Image(agent.get_graph().draw_mermaid_png()))
2025-12-01 04:46:12 [info     ] Creating new session           conversation_id=demo-notebook
2025-12-01 04:46:12 [info     ] Created session                conversation_id=demo-notebook
2025-12-01 04:46:12 [info     ] Initializing session           conversation_id=demo-notebook
2025-12-01 04:46:12 [info     ] Initialized MCPRegistry       
2025-12-01 04:46:12 [info     ] Skipping disabled MCP servers  disabled_servers=['tavily', 'alphavantage']
2025-12-01 04:46:12 [info     ] Connecting to MCP servers      server_count=2
2025-12-01 04:46:12 [info     ] Initialized MCPServerConnector server=tickertick
2025-12-01 04:46:12 [info     ] Initialized MCPServerConnector server=yfinance
2025-12-01 04:46:12 [info     ] Connecting to MCP server       server=tickertick
2025-12-01 04:46:12 [info     ] Connecting to MCP server       server=yfinance
2025-12-01 04:46:13 [info     ] Discovered tools               server=tickertick tools=['get_ticker_news', 'get_broad_ticker_news', 'get_news_from_source', 'get_news_for_multiple_tickers', 'get_curated_news', 'get_entity_news', 'search_tickers']
2025-12-01 04:46:13 [info     ] Connected to MCP server        server=tickertick tool_count=7
2025-12-01 04:46:13 [info     ] Discovered tools               server=yfinance tools=['get_stock_history', 'get_income_statement', 'get_balance_sheet', 'get_cash_flow', 'get_options_chain', 'get_company_info', 'get_analyst_recommendations', 'get_institutional_holders', 'get_dividends_and_splits', 'get_earnings_data', 'get_earnings_dates', 'get_insider_transactions', 'get_mutualfund_holders', 'get_sustainability_data', 'get_news', 'get_insider_roster', 'get_multiple_stocks_history', 'compare_financials', 'get_multiple_stocks_dividends', 'get_multiple_stocks_earnings', 'compare_valuations']
2025-12-01 04:46:13 [info     ] Connected to MCP server        server=yfinance tool_count=21
2025-12-01 04:46:13 [info     ] MCP servers connected          servers=['tickertick', 'yfinance']
2025-12-01 04:46:13 [info     ] Initialized PTCSandbox        
2025-12-01 04:46:13 [info     ] Setting up sandbox            
2025-12-01 04:46:13 [info     ] Checking for snapshot          snapshot_name=open-ptc-v1-6f8ea14e
2025-12-01 04:46:13 [info     ] Using existing snapshot        snapshot_name=open-ptc-v1-6f8ea14e
2025-12-01 04:46:13 [info     ] Creating sandbox from snapshot snapshot_name=open-ptc-v1-6f8ea14e
2025-12-01 04:46:15 [info     ] Sandbox created from snapshot  snapshot_name=open-ptc-v1-6f8ea14e
2025-12-01 04:46:15 [info     ] Sandbox ready from snapshot    sandbox_id=00863413-e271-4844-94b4-f7fe0713c78b snapshot=open-ptc-v1-6f8ea14e
2025-12-01 04:46:15 [info     ] Setting up workspace structure
2025-12-01 04:46:15 [info     ] Sandbox working directory: /home/daytona
2025-12-01 04:46:15 [info     ] Created directory: /home/daytona/tools
2025-12-01 04:46:16 [info     ] Created directory: /home/daytona/results
2025-12-01 04:46:16 [info     ] Created directory: /home/daytona/tools/docs
2025-12-01 04:46:16 [info     ] Created directory: /home/daytona/code
2025-12-01 04:46:16 [info     ] Created directory: /home/daytona/data
2025-12-01 04:46:16 [info     ] Uploaded MCP server file       local_path=mcp_servers/tickertick_mcp_server.py sandbox_path=/home/daytona/mcp_servers/tickertick_mcp_server.py server=tickertick
2025-12-01 04:46:16 [info     ] Uploaded MCP server file       local_path=mcp_servers/yfinance_mcp_server.py sandbox_path=/home/daytona/mcp_servers/yfinance_mcp_server.py server=yfinance
2025-12-01 04:46:16 [info     ] Installing tool modules       
2025-12-01 04:46:16 [info     ] Transformed MCP server command for sandbox original_args=['run', 'python', 'mcp_servers/tickertick_mcp_server.py'] original_command=uv sandbox_args=['run', 'python', '/home/daytona/mcp_servers/tickertick_mcp_server.py'] sandbox_command=uv server=tickertick
2025-12-01 04:46:16 [info     ] Transformed MCP server command for sandbox original_args=['run', 'python', 'mcp_servers/yfinance_mcp_server.py'] original_command=uv sandbox_args=['run', 'python', '/home/daytona/mcp_servers/yfinance_mcp_server.py'] sandbox_command=uv server=yfinance
2025-12-01 04:46:16 [info     ] Generating tool module         server=tickertick tool_count=7
2025-12-01 04:46:16 [info     ] Generating tool module         server=yfinance tool_count=21
2025-12-01 04:46:19 [info     ] MCP client module installed    path=/home/daytona/tools/mcp_client.py
2025-12-01 04:46:19 [info     ] Tool module installed          path=/home/daytona/tools/tickertick.py server=tickertick tool_count=7
2025-12-01 04:46:19 [info     ] Tool module installed          path=/home/daytona/tools/yfinance.py server=yfinance tool_count=21
2025-12-01 04:46:20 [info     ] Tool modules installation complete
2025-12-01 04:46:20 [info     ] Starting internal MCP servers 
2025-12-01 04:46:20 [info     ] Creating MCP server session    command='uv run python mcp_servers/tickertick_mcp_server.py' server=tickertick session=mcp-tickertick
2025-12-01 04:46:20 [info     ] MCP server session configured  server=tickertick session=mcp-tickertick
2025-12-01 04:46:20 [info     ] Creating MCP server session    command='uv run python mcp_servers/yfinance_mcp_server.py' server=yfinance session=mcp-yfinance
2025-12-01 04:46:20 [info     ] MCP server session configured  server=yfinance session=mcp-yfinance
2025-12-01 04:46:20 [info     ] Internal MCP server configuration complete servers=['tickertick', 'yfinance']
2025-12-01 04:46:20 [info     ] Sandbox setup complete         sandbox_id=00863413-e271-4844-94b4-f7fe0713c78b
2025-12-01 04:46:20 [info     ] Session initialized            conversation_id=demo-notebook
2025-12-01 04:46:21 [info     ] Initialized PTCAgent with deepagent model=gpt-5.1-codex-mini provider=openai
2025-12-01 04:46:21 [info     ] Initialized DaytonaBackend     root_dir=/home/daytona virtual_mode=True
2025-12-01 04:46:21 [info     ] Using custom filesystem tools (overriding middleware) tools=['read_file', 'write_file', 'edit_file', 'glob', 'grep']
2025-12-01 04:46:21 [info     ] Vision tool enabled            tool=view_image
2025-12-01 04:46:21 [info     ] ViewImageMiddleware enabled with strict validation and sandbox support
2025-12-01 04:46:21 [info     ] Background subagent execution enabled background_tools=['wait', 'check_task_progress'] timeout=60.0
2025-12-01 04:46:21 [info     ] Creating deepagent             subagent_count=2 tool_count=10 use_custom_filesystem_tools=True



print_agent_config(config, session, ptc_agent=ptc_agent)
======================================================================
AGENT CONFIGURATION SUMMARY
======================================================================

📦 LLM CONFIGURATION
----------------------------------------
  Name:      gpt-5.1-codex-mini
  Model ID:  gpt-5.1-codex-mini
  Provider:  openai
  Parameters: {'reasoning': {'effort': 'low', 'summary': 'auto'}}

🔌 MCP SERVERS
----------------------------------------
  tickertick: 7 tools
    ['get_ticker_news', 'get_broad_ticker_news', 'get_news_from_source', 'get_news_for_multiple_tickers', 'get_curated_news', 'get_entity_news', 'search_tickers']
  yfinance: 21 tools
    ['get_stock_history', 'get_income_statement', 'get_balance_sheet', 'get_cash_flow', 'get_options_chain', 'get_company_info', 'get_analyst_recommendations', 'get_institutional_holders', 'get_dividends_and_splits', 'get_earnings_data', 'get_earnings_dates', 'get_insider_transactions', 'get_mutualfund_holders', 'get_sustainability_data', 'get_news', 'get_insider_roster', 'get_multiple_stocks_history', 'compare_financials', 'get_multiple_stocks_dividends', 'get_multiple_stocks_earnings', 'compare_valuations']

  Total: 2 servers, 28 tools

🛠️ NATIVE TOOLS
----------------------------------------
  execute_code, Bash, read_file, write_file, edit_file, glob, grep, view_image, wait, check_task_progress

🤖 SUBAGENTS
----------------------------------------
  research: tavily_search, think_tool
  general-purpose: execute_code, read_file, write_file, edit_file, glob, grep, view_image

======================================================================

Runtime system prompt

# Get the formatted tool summary from MCP registry
tool_summary = ptc_agent._get_tool_summary(session.mcp_registry)
 
subagent_summary = ptc_agent._get_subagent_summary()
# Build the complete system prompt
system_prompt = ptc_agent._build_system_prompt(tool_summary, subagent_summary)
 
# Show the complete prompt
print(f"Total prompt length: {len(system_prompt)} characters")
show_prompt(system_prompt, title="PTCAgent Runtime System Prompt", border_style="green")
Total prompt length: 15450 characters
╭──────────────────────────────────────── PTCAgent Runtime System Prompt ─────────────────────────────────────────╮
                                                                                                                 
  For context, today's date is 2025-12-01.                                                                       
                                                                                                                 
  <task_workflow>                                                                                                
  # Task Workflow                                                                                                
                                                                                                                 
  Follow this workflow for all task requests:                                                                    
                                                                                                                 
  1. **Save the request**: Use write_file() to save the user's task description to `/results/task_request.md`    
  2. **Plan**: Create a todo list with write_todos to break down the task into focused steps                     
  3. **Execute**: Delegate subtasks to sub-agents using the task() tool, or execute directly                     
  4. **Write Output**: Write comprehensive results to `/results/` directory (see Output Guidelines below)        
  5. **Verify**: Read `/results/task_request.md` to confirm you've addressed all aspects of the original         
  request                                                                                                        
                                                                                                                 
  ## Task Planning Guidelines                                                                                    
  - Batch similar subtasks into a single TODO to minimize overhead                                               
  - For simple tasks, execute directly or use 1 sub-agent                                                        
  - For comparisons or multi-faceted tasks, delegate to multiple parallel sub-agents                             
  - Each sub-agent should handle one specific aspect and return findings                                         
  </task_workflow>                                                                                               
                                                                                                                 
  <workspace_paths>                                                                                              
  # Workspace Structure                                                                                          
                                                                                                                 
  Working directory: `/home/daytona`                                                                             
                                                                                                                 
  ## Standard Directories                                                                                        
                                                                                                                 
  | Directory | Purpose |                                                                                        
  |-----------|---------|                                                                                        
  | `results/` | Final deliverables (reports, visualizations) |                                                  
  | `data/` | Intermediate storage (tool results, API responses) |                                               
  | `tools/` | MCP tool modules (auto-generated) |                                                               
  | `code/` | Execution history (exec_0001.py, etc.) |                                                           
                                                                                                                 
  ## Path Rules by Tool                                                                                          
                                                                                                                 
  **execute_code (Python)** - Use RELATIVE paths:                                                                
  ```python                                                                                                      
  with open('results/output.json', 'w') as f:  # Correct                                                         
  with open('data/temp.json', 'w') as f:       # Correct                                                         
  ```                                                                                                            
                                                                                                                 
  **File tools (Read/Write/Edit)** - Use RELATIVE paths:                                                         
  ```                                                                                                            
  file_path = "results/report.md"    # Correct                                                                   
  file_path = "config.yaml"          # Correct                                                                   
  ```                                                                                                            
                                                                                                                 
  **Bash tool** - Use ABSOLUTE paths (working_dir is `/home/daytona`):                                           
  ```bash                                                                                                        
  ls /home/daytona/results/          # Correct                                                                   
  cat /home/daytona/data/output.json # Correct                                                                   
  ls results/                        # Also works (relative to working_dir)                                      
  ```                                                                                                            
                                                                                                                 
  **NEVER use these path patterns**:                                                                             
  - `/workspace/...` - Wrong prefix, becomes `/home/daytona/workspace/...`                                       
  - Absolute paths starting with `/results/` or `/data/` in Bash - these don't exist at root level               
  </workspace_paths>                                                                                             
                                                                                                                 
  <tool_discovery>                                                                                               
  # Tool Discovery                                                                                               
                                                                                                                 
  You have access to MCP servers with specialized tools. Use the `execute_code` tool to run Python code that     
  invokes these tools.                                                                                           
                                                                                                                 
                                                                                                                 
  tickertick: Financial news API for ticker news, curated news, and entity news from Tickertick                  
    Instructions: Use for getting financial news about specific tickers, curated market news, news from          
  specific sources, or news about entities like people and companies.                                            
    - Module: tools/tickertick.py                                                                                
    - Tools: 7 tools available                                                                                   
    - Import: from tools.tickertick import <tool_name>                                                           
    - Documentation: tools/docs/tickertick/*.md                                                                  
                                                                                                                 
  yfinance: Yahoo Finance API for stock prices, financial statements, options chains, and company data           
    Instructions: Use for historical stock prices, financial statements (income, balance sheet, cash flow),      
  options chains, company info, analyst recommendations, and institutional holders. Best for fundamental         
  analysis, historical data, and comparing multiple stocks. Returns large datasets ideal for code-based          
  post-processing.                                                                                               
    - Module: tools/yfinance.py                                                                                  
    - Tools: 21 tools available                                                                                  
    - Import: from tools.yfinance import <tool_name>                                                             
    - Documentation: tools/docs/yfinance/*.md                                                                    
                                                                                                                 
  **Note**: Check `tools/docs/{server_name}/{tool_name}.md` for exact function signatures before use.            
                                                                                                                 
  ## How to Use MCP Tools                                                                                        
                                                                                                                 
  Import and use MCP tools in your execute_code calls:                                                           
                                                                                                                 
  ```python                                                                                                      
  from tools.{server_name} import {tool_name}                                                                    
                                                                                                                 
  result = tool_name(param="value")                                                                              
  print(result)                                                                                                  
  ```                                                                                                            
                                                                                                                 
  ## Discovery Workflow                                                                                          
                                                                                                                 
  Before using any MCP tool, discover its exact signature using this workflow:                                   
                                                                                                                 
  ### Step 1: Search (glob/grep)                                                                                 
                                                                                                                 
  Find what's available before reading anything:                                                                 
                                                                                                                 
  ```python                                                                                                      
  glob("tools/docs/{server_name}/*.md")    # List all tool docs for a server                                     
  glob("tools/*.py")                        # List all MCP tool modules                                          
  grep("{keyword}", path="tools/docs/")     # Search docs by keyword                                             
  ```                                                                                                            
                                                                                                                 
  ### Step 2: Read Documentation FIRST                                                                           
                                                                                                                 
  **ALWAYS read the individual .md doc file first** - each tool has its own documentation:                       
                                                                                                                 
  ```python                                                                                                      
  read_file("tools/docs/{server_name}/{tool_name}.md")                                                           
  ```                                                                                                            
                                                                                                                 
  Tool doc files contain:                                                                                        
  - Function signature with all parameters                                                                       
  - Parameter types and descriptions                                                                             
  - Usage examples                                                                                               
  - Return type information                                                                                      
                                                                                                                 
  ### Step 3: Fallback to Code (only if needed)                                                                  
                                                                                                                 
  Only read the .py module if documentation is missing or incomplete:                                            
                                                                                                                 
  ```python                                                                                                      
  # Use offset/limit to read specific sections, not the entire file                                              
  read_file("tools/{server_name}.py", offset=50, limit=30)                                                       
  ```                                                                                                            
                                                                                                                 
  ## Quick Reference                                                                                             
                                                                                                                 
  | Goal | Command |                                                                                             
  |------|---------|                                                                                             
  | List server's tools | `glob("tools/docs/{server_name}/*.md")` |                                              
  | Read tool documentation | `read_file("tools/docs/{server_name}/{tool_name}.md")` |                           
  | Search all docs | `grep("{keyword}", path="tools/docs/")` |                                                  
  | Find tool in module | `grep("def {tool_name}", path="tools/{server_name}.py")` |                             
  | List saved results | `glob("results/*")` |                                                                   
                                                                                                                 
  ## Anti-Patterns to AVOID                                                                                      
                                                                                                                 
  - DON'T read entire .py files to find one tool's signature - read the .md doc instead                          
  - DON'T guess tool parameters without checking documentation first                                             
  - DON'T use Bash find/grep when glob/grep tools exist                                                          
  - DON'T read large files without offset/limit                                                                  
  </tool_discovery>                                                                                              
                                                                                                                 
  <output_guidelines>                                                                                            
  # Output Guidelines                                                                                            
                                                                                                                 
  When writing output reports to `/results/`, follow these structure patterns:                                   
                                                                                                                 
  **For comparisons:**                                                                                           
  1. Introduction                                                                                                
  2. Overview of topic A                                                                                         
  3. Overview of topic B                                                                                         
  4. Detailed comparison                                                                                         
  5. Conclusion                                                                                                  
                                                                                                                 
  **For lists/rankings:**                                                                                        
  Simply list items with details - no introduction needed:                                                       
  1. Item 1 with explanation                                                                                     
  2. Item 2 with explanation                                                                                     
  3. Item 3 with explanation                                                                                     
                                                                                                                 
  **For summaries/overviews:**                                                                                   
  1. Overview of topic                                                                                           
  2. Key concept 1                                                                                               
  3. Key concept 2                                                                                               
  4. Key concept 3                                                                                               
  5. Conclusion                                                                                                  
                                                                                                                 
  **General guidelines:**                                                                                        
  - Use clear section headings (## for sections, ### for subsections)                                            
  - Write in paragraph form by default - be text-heavy, not just bullet points                                   
  - Do NOT use self-referential language ("I found...", "I researched...")                                       
  - Write as a professional report without meta-commentary                                                       
  - Each section should be comprehensive and detailed                                                            
  - Use bullet points only when listing is more appropriate than prose                                           
  </output_guidelines>                                                                                           
                                                                                                                 
  <citation_rules>                                                                                               
  # Citation Rules                                                                                               
                                                                                                                 
  Use numbered citations throughout your report:                                                                 
  - Cite sources inline using [1], [2], [3] format                                                               
  - Assign each unique URL a single citation number                                                              
  - End report with ### Sources section listing each numbered source                                             
  - Number sources sequentially without gaps (1,2,3,4...)                                                        
  - Format: [1] Source Title: URL (each on separate line for proper list rendering)                              
                                                                                                                 
  **Example:**                                                                                                   
                                                                                                                 
  Some important finding [1]. Another key insight [2].                                                           
                                                                                                                 
  ### Sources                                                                                                    
  [1] AI Research Paper: https://example.com/paper                                                               
  [2] Industry Analysis: https://example.com/analysis                                                            
  </citation_rules>                                                                                              
                                                                                                                 
  <subagent_coordination>                                                                                        
  # Sub-Agent Task Coordination                                                                                  
                                                                                                                 
  Your role is to coordinate work by delegating tasks from your TODO list to specialized sub-agents.             
                                                                                                                 
  ## Available Sub-Agents                                                                                        
                                                                                                                 
  - **research**: Delegate research to the sub-agent researcher. Give this researcher one specific topic or      
  question at a time. The researcher will search the web and provide findings with citations.                    
    Tools: tavily_search, think_tool                                                                             
  - **general-purpose**: Delegate complex tasks to the general-purpose sub-agent. This agent has access to all   
  filesystem tools (read, write, edit, glob, grep, bash) and can execute Python code with MCP tools. Use for     
  multi-step operations, data processing, file manipulation, or any task requiring full tool access.             
    Tools: execute_code, read_file, write_file, edit_file, glob, grep, view_image                                
                                                                                                                 
  ## Delegation Strategy                                                                                         
                                                                                                                 
  **Simple tasks** -> 1 sub-agent or direct execution:                                                           
  - "List the top 10 coffee shops in San Francisco"                                                              
  - "What is quantum computing?"                                                                                 
  - "Fetch data for symbol X"                                                                                    
                                                                                                                 
  **Comparisons** -> 1 sub-agent per element:                                                                    
  - "Compare OpenAI vs Anthropic vs DeepMind" -> 3 parallel sub-agents                                           
  - "Compare Python vs JavaScript" -> 2 parallel sub-agents                                                      
                                                                                                                 
  **Multi-faceted tasks** -> 1 sub-agent per aspect:                                                             
  - "Analyze topic X: aspect A, aspect B, aspect C" -> 3 parallel sub-agents                                     
  - "Process data: fetch, transform, visualize" -> 3 parallel sub-agents                                         
                                                                                                                 
  ## Parallel Execution                                                                                          
  - Use at most 3 parallel sub-agents per iteration                                                              
  - Make multiple task() calls in a single response to enable parallel execution                                 
  - Each sub-agent returns findings independently                                                                
                                                                                                                 
  ## Background Subagent Execution                                                                               
                                                                                                                 
  When you invoke subagents via the `task()` tool, they run in the **background** and are assigned sequential    
  IDs (Task-1, Task-2, Task-3, etc.):                                                                            
                                                                                                                 
  1. **Immediate Response**: You receive confirmation with a Task ID (e.g., "Task-1 deployed")                   
  2. **Continue Working**: You can proceed with other tasks while subagents execute                              
  3. **Monitor Progress**: Use `check_task_progress()` to see subagent activity                                  
  4. **Collect Results**: Use `wait()` or complete your work to trigger result collection                        
  5. **Synthesis**: Incorporate subagent results into your final response                                        
                                                                                                                 
  ### Management Tools                                                                                           
                                                                                                                 
  **`wait(task_number=None, timeout=60.0)`**                                                                     
  - Wait for specific task: `wait(task_number=1)` - waits for Task-1                                             
  - Wait for all tasks: `wait()` - waits for all pending background tasks                                        
  - Custom timeout: `wait(task_number=2, timeout=120)` - wait up to 2 minutes                                    
                                                                                                                 
  **`check_task_progress(task_number=None)`**                                                                    
  - Check specific task: `check_task_progress(task_number=1)` - shows Task-1 status                              
  - Check all tasks: `check_task_progress()` - overview of all background tasks                                  
  - Shows: status (running/completed), tool calls made, current activity, elapsed time                           
                                                                                                                 
  ### Important Guidelines                                                                                       
                                                                                                                 
  1. **Avoid Duplicate Assignments**: Before assigning a new task, check if a similar task is already running    
  using `check_task_progress()`. Do not assign the same or overlapping tasks to multiple subagents.              
                                                                                                                 
  2. **Use Task IDs**: Reference subagents by their Task-N ID when checking progress or waiting for specific     
  results.                                                                                                       
                                                                                                                 
  3. **Independent Tasks Only**: Background execution works best for independent tasks. For tasks with           
  dependencies, wait for prerequisite tasks to complete first.                                                   
                                                                                                                 
  4. **Result Collection Options**:                                                                              
     - **Explicit wait**: Call `wait()` or `wait(task_number=N)` when you need results                           
     - **Implicit collection**: When you finish your work, pending results are automatically collected           
                                                                                                                 
  ### Example Flow                                                                                               
  ```                                                                                                            
  User: "Research topics A, B, C and synthesize findings"                                                        
                                                                                                                 
  1. task() -> Research topic A  → "Task-1 deployed"                                                             
  2. task() -> Research topic B  → "Task-2 deployed"                                                             
  3. task() -> Research topic C  → "Task-3 deployed"                                                             
  4. check_task_progress()       → Shows 3 tasks running                                                         
  5. [Continue other work or wait...]                                                                            
  6. wait()                      → Collects all results                                                          
  7. Synthesize findings into final response                                                                     
  ```                                                                                                            
                                                                                                                 
  ### Task Status Indicators                                                                                     
  - `[RUNNING]`: Task is actively executing                                                                      
  - `[DONE]`: Task finished successfully                                                                         
  - `[ERROR]`: Task encountered an error                                                                         
                                                                                                                 
  ## Processing Sub-Agent Results                                                                                
                                                                                                                 
  When a sub-agent returns results:                                                                              
  1. **View images/charts**: If the sub-agent mentions images, charts, or visualizations, use `view_image` to    
  view them                                                                                                      
     - Check for image URLs in the response                                                                      
     - Check for image paths in `data/` or `results/` directories                                                
  2. **Read referenced files if needed**: If the sub-agent saved intermediate results, read them from:           
     - `data/` - Raw data, large datasets                                                                        
     - `results/task_*.md` - Textual analysis                                                                    
     - `code/` - Code executed by the sub-agent                                                                  
  3. **Synthesize**: Combine findings from all sub-agents into a cohesive response                               
                                                                                                                 
  ## Task Limits                                                                                                 
  - Stop after 3 delegation rounds if task cannot be completed                                                   
  - Stop when you have sufficient results to fulfill the request                                                 
  - Bias towards focused execution over exhaustive exploration                                                   
  </subagent_coordination>                                                                                       
                                                                                                                 
  <data_processing>                                                                                              
  # Data Processing                                                                                              
                                                                                                                 
  **Core principle**: Always dump data first, then process. This enables iterative inspection and reprocessing   
  without re-fetching.                                                                                           
                                                                                                                 
  ## Workflow: Dump First, Then Process                                                                          
                                                                                                                 
  1. **Dump raw result** → Save to `data/` immediately after tool call                                           
  2. **Inspect structure** → Use bash/jq or code to peek at schema                                               
  3. **Extract what you need** → Process the saved file, not the raw result                                      
  4. **Return summary** → Only summaries flow to LLM                                                             
                                                                                                                 
  This approach:                                                                                                 
  - Preserves raw data for reprocessing                                                                          
  - Enables quick inspection with bash/jq                                                                        
  - Minimizes token usage                                                                                        
  - Allows iterative refinement                                                                                  
                                                                                                                 
  ## Inspecting Large Data                                                                                       
                                                                                                                 
  ### Peek at JSON Structure                                                                                     
  ```python                                                                                                      
  import json                                                                                                    
                                                                                                                 
  # Quick structure inspection                                                                                   
  with open('data/large_file.json') as f:                                                                        
      data = json.load(f)                                                                                        
                                                                                                                 
  # Show top-level keys and types                                                                                
  for key, value in data.items():                                                                                
      print(f"{key}: {type(value).__name__}", end="")                                                            
      if isinstance(value, list):                                                                                
          print(f" ({len(value)} items)")                                                                        
      elif isinstance(value, dict):                                                                              
          print(f" ({len(value)} keys)")                                                                         
      else:                                                                                                      
          print()                                                                                                
  ```                                                                                                            
                                                                                                                 
  ### Using jq for Quick Inspection (Bash)                                                                       
  ```bash                                                                                                        
  # View structure                                                                                               
  jq 'keys' data/file.json                                                                                       
                                                                                                                 
  # First item of array                                                                                          
  jq '.[0]' data/file.json                                                                                       
                                                                                                                 
  # Count items                                                                                                  
  jq 'length' data/file.json                                                                                     
                                                                                                                 
  # Extract specific field                                                                                       
  jq '.items[].name' data/file.json                                                                              
  ```                                                                                                            
                                                                                                                 
  ### Display Key Statistics                                                                                     
  ```python                                                                                                      
  import json                                                                                                    
  from collections import Counter                                                                                
                                                                                                                 
  with open('data/results.json') as f:                                                                           
      data = json.load(f)                                                                                        
                                                                                                                 
  # For list data                                                                                                
  if isinstance(data, list):                                                                                     
      print(f"Total records: {len(data)}")                                                                       
      if data and isinstance(data[0], dict):                                                                     
          print(f"Fields: {list(data[0].keys())}")                                                               
          # Count by category if applicable                                                                      
          if 'type' in data[0]:                                                                                  
              types = Counter(item['type'] for item in data)                                                     
              print(f"By type: {dict(types)}")                                                                   
  ```                                                                                                            
                                                                                                                 
  ## Finding Specific Sections                                                                                   
                                                                                                                 
  ### Search within JSON                                                                                         
  ```python                                                                                                      
  # Find items matching criteria                                                                                 
  matches = [item for item in data if 'keyword' in item.get('name', '').lower()]                                 
  print(f"Found {len(matches)} matches")                                                                         
  ```                                                                                                            
                                                                                                                 
  ### Using grep for Quick Search                                                                                
  ```bash                                                                                                        
  # Find lines containing pattern                                                                                
  grep -n "error" data/logs.json                                                                                 
                                                                                                                 
  # Context around match                                                                                         
  grep -B2 -A2 "target_id" data/results.json                                                                     
  ```                                                                                                            
                                                                                                                 
  ## When to Dump to `data/` Directory                                                                           
                                                                                                                 
  ALWAYS dump tool results to `data/` when:                                                                      
  - **Structured data**: JSON, dictionaries, lists with >10 items                                                
  - **Large text**: Responses >500 characters                                                                    
  - **Tabular data**: DataFrames, CSV-like data with >5 rows                                                     
  - **API responses**: Raw API responses (preserve for reprocessing)                                             
  - **Intermediate results**: Data that may be referenced later                                                  
                                                                                                                 
  ## Storage and Summary Pattern                                                                                 
                                                                                                                 
  ```python                                                                                                      
  import json                                                                                                    
                                                                                                                 
  # 1. Get data from tool                                                                                        
  result = some_mcp_tool(query="...")                                                                            
                                                                                                                 
  # 2. Dump full result                                                                                          
  with open('data/tool_result_001.json', 'w') as f:                                                              
      json.dump(result, f, indent=2)                                                                             
                                                                                                                 
  # 3. Return ONLY summary                                                                                       
  items = result.get('items', [])                                                                                
  print(f"""                                                                                                     
  ## Result Summary                                                                                              
  - Saved to: data/tool_result_001.json                                                                          
  - Records: {len(items)}                                                                                        
  - Fields: {list(items[0].keys()) if items else 'N/A'}                                                          
  - Sample: {items[0] if items else 'empty'}                                                                     
  """)                                                                                                           
  ```                                                                                                            
  </data_processing>                                                                                             
                                                                                                                 
  <image_upload>                                                                                                 
  # Image Auto-Upload                                                                                            
                                                                                                                 
  Images saved to `results/` are automatically uploaded to cloud storage. The URL is returned in the response.   
                                                                                                                 
  **CRITICAL**: Use RELATIVE paths, NOT absolute paths:                                                          
  - CORRECT: `plt.savefig('results/chart.png')` -> auto-uploaded, URL returned                                   
  - WRONG: `plt.savefig('/results/chart.png')` -> NOT uploaded!                                                  
                                                                                                                 
  Example:                                                                                                       
  ```python                                                                                                      
  import matplotlib.pyplot as plt                                                                                
  plt.figure(figsize=(10, 6))                                                                                    
  plt.plot(data)                                                                                                 
  plt.savefig('results/chart.png')  # Use relative path!                                                         
  print("Chart saved")                                                                                           
  ```                                                                                                            
                                                                                                                 
  The response includes: `![chart](https://storage-url/chart.png)` - reference this URL in your report.          
  </image_upload>                                                                                                
                                                                                                                 
                                                                                                                 
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

Sandbox workspace preview

# Display sandbox file tree BEFORE agent execution
print("=" * 50)
print("Sandbox File Tree (BEFORE)")
print("=" * 50)
print("./")
print_sandbox_tree(session.sandbox)
==================================================
Sandbox File Tree (BEFORE)
==================================================
./
├── code/
├── data/
├── mcp_servers/
│   ├── tickertick_mcp_server.py
│   └── yfinance_mcp_server.py
├── results/
└── tools/
    ├── docs/
    │   ├── tickertick/
    │   │   ├── get_broad_ticker_news.md
    │   │   ├── get_curated_news.md
    │   │   ├── get_entity_news.md
    │   │   ├── get_news_for_multiple_tickers.md
    │   │   ├── get_news_from_source.md
    │   │   ├── get_ticker_news.md
    │   │   └── search_tickers.md
    │   └── yfinance/
    │       ├── compare_financials.md
    │       ├── compare_valuations.md
    │       ├── get_analyst_recommendations.md
    │       ├── get_balance_sheet.md
    │       ├── get_cash_flow.md
    │       ├── get_company_info.md
    │       ├── get_dividends_and_splits.md
    │       ├── get_earnings_data.md
    │       ├── get_earnings_dates.md
    │       ├── get_income_statement.md
    │       ├── get_insider_roster.md
    │       ├── get_insider_transactions.md
    │       ├── get_institutional_holders.md
    │       ├── get_multiple_stocks_dividends.md
    │       ├── get_multiple_stocks_earnings.md
    │       ├── get_multiple_stocks_history.md
    │       ├── get_mutualfund_holders.md
    │       ├── get_news.md
    │       ├── get_options_chain.md
    │       ├── get_stock_history.md
    │       └── get_sustainability_data.md
    ├── __init__.py
    ├── mcp_client.py
    ├── tickertick.py
    └── yfinance.py

Agent execution

# You may changes this to your own query.
# By default, two custom finance related mcp servers are available. 
# Make sure you configure any additional MCP servers if you want to test it outside of the default scope.
query = """compare the stock price of nvidia and amd over the past year. create a 2 by 2 chart that shows the price, volume, some key fundemental data comparison"""
result = await agent.ainvoke(
    {
        "messages": [
            {
                "role": "user",
                "content": query
            }
        ],
    }, 
)
 
format_messages(result["messages"])
2025-12-01 04:48:07 [info     ] Orchestrator invoking agent    has_messages=True iteration=1
2025-12-01 04:48:10 [info     ] Writing file                   file_path=results/task_request.md normalized_path=/home/daytona/results/task_request.md size=143
2025-12-01 04:48:11 [info     ] Wrote 143 bytes to /home/daytona/results/task_request.md
2025-12-01 04:48:11 [info     ] File written successfully      bytes_written=143 file_path=/results/task_request.md
2025-12-01 04:48:16 [info     ] Globbing files                 normalized_path=/home/daytona/.} path=.} pattern=tools/docs/yfinance/*.md
2025-12-01 04:48:16 [info     ] Found 0 files matching **/tools/docs/yfinance/*.md
2025-12-01 04:48:16 [info     ] No files found                 path=.} pattern=tools/docs/yfinance/*.md
2025-12-01 04:48:18 [info     ] Globbing files                 normalized_path=/home/daytona path=. pattern=tools/docs/yfinance/*.md
2025-12-01 04:48:18 [info     ] Found 21 files matching **/tools/docs/yfinance/*.md
2025-12-01 04:48:18 [info     ] Glob completed successfully    matches=21 path=. pattern=tools/docs/yfinance/*.md
2025-12-01 04:48:21 [info     ] Reading file                   file_path=tools/docs/yfinance/get_multiple_stocks_history.md limit=400 normalized_path=/home/daytona/tools/docs/yfinance/get_multiple_stocks_history.md offset=0
2025-12-01 04:48:21 [info     ] Read file range                file_path=/home/daytona/tools/docs/yfinance/get_multiple_stocks_history.md limit=400 lines_read=55 offset=1
2025-12-01 04:48:21 [info     ] File read successfully         file_path=tools/docs/yfinance/get_multiple_stocks_history.md lines=55 size=1601
2025-12-01 04:48:23 [info     ] Reading file                   file_path=tools/docs/yfinance/get_company_info.md limit=400 normalized_path=/home/daytona/tools/docs/yfinance/get_company_info.md offset=0
2025-12-01 04:48:24 [info     ] Read file range                file_path=/home/daytona/tools/docs/yfinance/get_company_info.md limit=400 lines_read=33 offset=1
2025-12-01 04:48:24 [info     ] File read successfully         file_path=tools/docs/yfinance/get_company_info.md lines=33 size=634
2025-12-01 04:48:27 [info     ] Executing code in sandbox      code_length=576
2025-12-01 04:48:27 [info     ] Executing code                 auto_install=True code_hash=ac70cff8c67c4b94 code_length=576 execution_id=exec_0001
2025-12-01 04:48:30 [info     ] Code execution completed       charts_captured=0 duration=3.075885057449341 execution_id=exec_0001 files_created=0 success=True
2025-12-01 04:48:31 [info     ] Code executed successfully     images_uploaded=0 stdout_length=51
2025-12-01 04:48:41 [info     ] Reading file                   file_path=data/nvda_info.json limit=400 normalized_path=/home/daytona/data/nvda_info.json offset=1
2025-12-01 04:48:42 [info     ] Read file range                file_path=/home/daytona/data/nvda_info.json limit=400 lines_read=290 offset=1
2025-12-01 04:48:42 [info     ] File read successfully         file_path=data/nvda_info.json lines=290 size=10517
2025-12-01 04:48:43 [info     ] Reading file                   file_path=data/amd_info.json limit=200 normalized_path=/home/daytona/data/amd_info.json offset=1
2025-12-01 04:48:44 [info     ] Read file range                file_path=/home/daytona/data/amd_info.json limit=200 lines_read=200 offset=1
2025-12-01 04:48:44 [info     ] File read successfully         file_path=data/amd_info.json lines=200 size=7961
2025-12-01 04:48:46 [info     ] Reading file                   file_path=data/amd_info.json limit=200 normalized_path=/home/daytona/data/amd_info.json offset=200
2025-12-01 04:48:46 [info     ] Read file range                file_path=/home/daytona/data/amd_info.json limit=200 lines_read=81 offset=200
2025-12-01 04:48:46 [info     ] File read successfully         file_path=data/amd_info.json lines=81 size=2821
2025-12-01 04:49:00 [info     ] Executing code in sandbox      code_length=3247
2025-12-01 04:49:00 [info     ] Executing code                 auto_install=True code_hash=d8efc999caa0c6f3 code_length=3247 execution_id=exec_0002
2025-12-01 04:49:03 [info     ] Code execution completed       charts_captured=0 duration=2.260283946990967 execution_id=exec_0002 files_created=1 success=True
2025-12-01 04:49:04 [info     ] Uploaded image to storage: charts/exec_0002/nvda_amd_comparison.png
2025-12-01 04:49:04 [info     ] Code executed successfully     images_uploaded=1 stdout_length=46
2025-12-01 04:49:08 [info     ] Executing code in sandbox      code_length=905
2025-12-01 04:49:08 [info     ] Executing code                 auto_install=True code_hash=852885017b0e3952 code_length=905 execution_id=exec_0003
2025-12-01 04:49:10 [info     ] Code execution completed       charts_captured=0 duration=1.442831039428711 execution_id=exec_0003 files_created=0 success=True
2025-12-01 04:49:10 [info     ] Code executed successfully     images_uploaded=0 stdout_length=172
2025-12-01 04:49:25 [info     ] Writing file                   file_path=results/nvidia_amd_comparison.md normalized_path=/home/daytona/results/nvidia_amd_comparison.md size=3140
2025-12-01 04:49:25 [info     ] Wrote 3140 bytes to /home/daytona/results/nvidia_amd_comparison.md
2025-12-01 04:49:25 [info     ] File written successfully      bytes_written=3166 file_path=/results/nvidia_amd_comparison.md
2025-12-01 04:49:32 [info     ] Reading file                   file_path=results/task_request.md limit=100 normalized_path=/home/daytona/results/task_request.md offset=1
2025-12-01 04:49:32 [info     ] Read file range                file_path=/home/daytona/results/task_request.md limit=100 lines_read=1 offset=1
2025-12-01 04:49:32 [info     ] File read successfully         file_path=results/task_request.md lines=1 size=143
╭─────────────────────────────────────────────────── 🧑 Human ────────────────────────────────────────────────────╮
 compare the stock price of nvidia and amd over the past year. create a 2 by 2 chart that shows the price,       
 volume, some key fundemental data comparison                                                                    
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_file                                                                                        
    Args: {                                                                                                      
   "file_path": "results/task_request.md",                                                                       
   "content": "Compare the stock price of Nvidia and AMD over the past year and create a 2x2 chart showing       
 price, volume, and key fundamental data comparison."                                                            
 }                                                                                                               
    ID: call_k3htR9isyxxvSLiWVsuwVEau                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Wrote 143 bytes to /results/task_request.md                                                                     
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_todos                                                                                       
    Args: {                                                                                                      
   "todos": [                                                                                                    
     {                                                                                                           
       "content": "Collect the past year of price, volume, and fundamental data for NVDA and AMD via yfinance",  
       "status": "in_progress"                                                                                   
     },                                                                                                          
     {                                                                                                           
       "content": "Produce a 2x2 chart comparing price, volume, and key fundamentals for both stocks",           
       "status": "pending"                                                                                       
     },                                                                                                          
     {                                                                                                           
       "content": "Draft a professional comparison report summarizing findings and cite data sources",           
       "status": "pending"                                                                                       
     }                                                                                                           
   ]                                                                                                             
 }                                                                                                               
    ID: call_AAwmNFQuHCg4f8VZCGDLCsiJ                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Updated todo list to [{'content': 'Collect the past year of price, volume, and fundamental data for NVDA and    
 AMD via yfinance', 'status': 'in_progress'}, {'content': 'Produce a 2x2 chart comparing price, volume, and key  
 fundamentals for both stocks', 'status': 'pending'}, {'content': 'Draft a professional comparison report        
 summarizing findings and cite data sources', 'status': 'pending'}]                                              
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: glob                                                                                              
    Args: {                                                                                                      
   "pattern": "tools/docs/yfinance/*.md",                                                                        
   "path": ".}"                                                                                                  
 }                                                                                                               
    ID: call_v1iCD3wdCIZtwy9MhbvEeQnC                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 No files matching pattern 'tools/docs/yfinance/*.md' found in '.}'                                              
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: glob                                                                                              
    Args: {                                                                                                      
   "pattern": "tools/docs/yfinance/*.md",                                                                        
   "path": "."                                                                                                   
 }                                                                                                               
    ID: call_ci3EBGPumiHxv21EqtWh5OOV                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Found 21 file(s) matching 'tools/docs/yfinance/*.md':                                                           
 /tools/docs/yfinance/compare_valuations.md                                                                      
 /tools/docs/yfinance/compare_financials.md                                                                      
 /tools/docs/yfinance/get_multiple_stocks_dividends.md                                                           
 /tools/docs/yfinance/get_insider_transactions.md                                                                
 /tools/docs/yfinance/get_multiple_stocks_earnings.md                                                            
 /tools/docs/yfinance/get_sustainability_data.md                                                                 
 /tools/docs/yfinance/get_mutualfund_holders.md                                                                  
 /tools/docs/yfinance/get_insider_roster.md                                                                      
 /tools/docs/yfinance/get_news.md                                                                                
 /tools/docs/yfinance/get_multiple_stocks_history.md                                                             
 /tools/docs/yfinance/get_earnings_dates.md                                                                      
 /tools/docs/yfinance/get_income_statement.md                                                                    
 /tools/docs/yfinance/get_institutional_holders.md                                                               
 /tools/docs/yfinance/get_dividends_and_splits.md                                                                
 /tools/docs/yfinance/get_options_chain.md                                                                       
 /tools/docs/yfinance/get_analyst_recommendations.md                                                             
 /tools/docs/yfinance/get_stock_history.md                                                                       
 /tools/docs/yfinance/get_earnings_data.md                                                                       
 /tools/docs/yfinance/get_balance_sheet.md                                                                       
 /tools/docs/yfinance/get_cash_flow.md                                                                           
 /tools/docs/yfinance/get_company_info.md                                                                        
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "tools/docs/yfinance/get_multiple_stocks_history.md",                                            
   "offset": 0,                                                                                                  
   "limit": 400                                                                                                  
 }                                                                                                               
    ID: call_wIwnrDppFCV3liA7PTyWIp6k                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
      1→# get_multiple_stocks_history(tickers: List, period: str = 1y, interval: str = 1d)                       
      2→                                                                                                         
      3→                                                                                                         
      4→    Get historical data for multiple stocks in a single call.                                            
      5→                                                                                                         
      6→    VERY HIGH PTC VALUE: Returns N × 252 rows per year for N stocks.                                     
      7→    Ideal for portfolio analysis, correlation studies, and comparative performance.                      
      8→                                                                                                         
      9→    Args:                                                                                                
     10→        tickers: List of ticker symbols (e.g., ["AAPL", "MSFT", "GOOGL"])                                
     11→        period: Data period - 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max                           
     12→        interval: Data interval - 1d, 5d, 1wk, 1mo, 3mo                                                  
     13→                                                                                                         
     14→    Returns:                                                                                             
     15→        dict: {                                                                                          
     16→            "period": str,                                                                               
     17→            "interval": str,                                                                             
     18→            "data": {ticker: {"count": int, "history": list}},                                           
     19→            "successful_tickers": list,                                                                  
     20→            "total_data_points": int,                                                                    
     21→            "errors": list  # Optional, only if errors occurred                                          
     22→        }                                                                                                
     23→        Use pd.DataFrame(result["data"]["AAPL"]["history"]) to convert to DataFrame.                     
     24→                                                                                                         
     25→                                                                                                         
     26→## Parameters                                                                                            
     27→                                                                                                         
     28→- `tickers` (array) - **Required**                                                                       
     29→                                                                                                         
     30→- `period` (string) - Optional                                                                           
     31→                                                                                                         
     32→- `interval` (string) - Optional                                                                         
     33→                                                                                                         
     34→## Returns                                                                                               
     35→                                                                                                         
     36→**Type:** `dict`                                                                                         
     37→                                                                                                         
     38→dict: {                                                                                                  
     39→            "period": str,                                                                               
     40→            "interval": str,                                                                             
     41→            "data": {ticker: {"count": int, "history": list}},                                           
     42→            "successful_tickers": list,                                                                  
     43→            "total_data_points": int,                                                                    
     44→            "errors": list  # Optional, only if errors occurred                                          
     45→        }                                                                                                
     46→        Use pd.DataFrame(result["data"]["AAPL"]["history"]) to convert to DataFrame.                     
     47→                                                                                                         
     48→## Example                                                                                               
     49→                                                                                                         
     50→```python                                                                                                
     51→from tools.yfinance import get_multiple_stocks_history                                                   
     52→                                                                                                         
     53→result = get_multiple_stocks_history(tickers=[])                                                         
     54→print(result)                                                                                            
     55→```                                                                                                      
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "tools/docs/yfinance/get_company_info.md",                                                       
   "offset": 0,                                                                                                  
   "limit": 400                                                                                                  
 }                                                                                                               
    ID: call_T3BTr2PClpYVgE0MDyYv7sYz                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
      1→# get_company_info(ticker: str)                                                                          
      2→                                                                                                         
      3→                                                                                                         
      4→    Get comprehensive company information (sector, industry, market cap, ratios, etc.)                   
      5→                                                                                                         
      6→    MEDIUM PTC VALUE: Returns 100+ fields of company metadata.                                           
      7→    Useful for screening, sector analysis, and fundamental overview.                                     
      8→                                                                                                         
      9→    Args:                                                                                                
     10→        ticker: Stock ticker symbol (e.g., "AAPL", "MSFT")                                               
     11→                                                                                                         
     12→    Returns:                                                                                             
     13→        Dictionary with company information                                                              
     14→                                                                                                         
     15→                                                                                                         
     16→## Parameters                                                                                            
     17→                                                                                                         
     18→- `ticker` (string) - **Required**                                                                       
     19→                                                                                                         
     20→## Returns                                                                                               
     21→                                                                                                         
     22→**Type:** `dict`                                                                                         
     23→                                                                                                         
     24→Dictionary with company information                                                                      
     25→                                                                                                         
     26→## Example                                                                                               
     27→                                                                                                         
     28→```python                                                                                                
     29→from tools.yfinance import get_company_info                                                              
     30→                                                                                                         
     31→result = get_company_info(ticker="example")                                                              
     32→print(result)                                                                                            
     33→```                                                                                                      
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: execute_code                                                                                      
    Args: {                                                                                                      
   "code": "from tools.yfinance import get_multiple_stocks_history, get_company_info\nimport json\n\nhistory =   
 get_multiple_stocks_history(tickers=[\"NVDA\", \"AMD\"], period=\"1y\", interval=\"1d\")\nwith                  
 open('data/nvidia_amd_history.json', 'w') as f:\n    json.dump(history, f, indent=2)\n\nnvda_info =             
 get_company_info(ticker=\"NVDA\")\namd_info = get_company_info(ticker=\"AMD\")\nwith                            
 open('data/nvda_info.json', 'w') as f:\n    json.dump(nvda_info, f, indent=2)\nwith open('data/amd_info.json',  
 'w') as f:\n    json.dump(amd_info, f, indent=2)\n\nprint(\"Historical and company info saved for NVDA and      
 AMD.\")"                                                                                                        
 }                                                                                                               
    ID: call_InqfzgB1BQgozjydPkG7PRqx                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 SUCCESS                                                                                                         
 Historical and company info saved for NVDA and AMD.                                                             
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_todos                                                                                       
    Args: {                                                                                                      
   "todos": [                                                                                                    
     {                                                                                                           
       "content": "Collect the past year of price, volume, and fundamental data for NVDA and AMD via yfinance",  
       "status": "completed"                                                                                     
     },                                                                                                          
     {                                                                                                           
       "content": "Produce a 2x2 chart comparing price, volume, and key fundamentals for both stocks",           
       "status": "in_progress"                                                                                   
     },                                                                                                          
     {                                                                                                           
       "content": "Draft a professional comparison report summarizing findings and cite data sources",           
       "status": "pending"                                                                                       
     }                                                                                                           
   ]                                                                                                             
 }                                                                                                               
    ID: call_wlA9epTEN4DuLSoUb6WHWMxP                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Updated todo list to [{'content': 'Collect the past year of price, volume, and fundamental data for NVDA and    
 AMD via yfinance', 'status': 'completed'}, {'content': 'Produce a 2x2 chart comparing price, volume, and key    
 fundamentals for both stocks', 'status': 'in_progress'}, {'content': 'Draft a professional comparison report    
 summarizing findings and cite data sources', 'status': 'pending'}]                                              
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "data/nvda_info.json",                                                                           
   "offset": 1,                                                                                                  
   "limit": 400                                                                                                  
 }                                                                                                               
    ID: call_f3GqaA4IZCHfzBgap3aB4jkH                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
      1→{                                                                                                        
      2→  "ticker": "NVDA",                                                                                      
      3→  "info": {                                                                                              
      4→    "address1": "2788 San Tomas Expressway",                                                             
      5→    "city": "Santa Clara",                                                                               
      6→    "state": "CA",                                                                                       
      7→    "zip": "95051",                                                                                      
      8→    "country": "United States",                                                                          
      9→    "phone": "408 486 2000",                                                                             
     10→    "website": "https://www.nvidia.com",                                                                 
     11→    "industry": "Semiconductors",                                                                        
     12→    "industryKey": "semiconductors",                                                                     
     13→    "industryDisp": "Semiconductors",                                                                    
     14→    "sector": "Technology",                                                                              
     15→    "sectorKey": "technology",                                                                           
     16→    "sectorDisp": "Technology",                                                                          
     17→    "longBusinessSummary": "NVIDIA Corporation, a computing infrastructure company, provides graphics    
 and compute and networking solutions in the United States, Singapore, Taiwan, China, Hong Kong, and             
 internationally. The Compute & Networking segment includes its Data Centre accelerated computing platforms and  
 artificial intelligence solutions and software; networking; automotive platforms and autonomous and electric    
 vehicle solutions; Jetson for robotics and other embedded platforms; and DGX Cloud computing services. The      
 Graphics segment offers GeForce GPUs for gaming and PCs, the GeForce NOW game streaming service and related     
 infrastructure, and solutions for gaming platforms; Quadro/NVIDIA RTX GPUs for enterprise workstation graphics; 
 virtual GPU or vGPU software for cloud-based visual and virtual computing; automotive platforms for             
 infotainment systems; and Omniverse software for building and operating industrial AI and digital twin          
 applications. It also customized agentic solutions designed in collaboration with NVIDIA to accelerate          
 enterprise AI adoption. The company's products are used in gaming, professional visualization, data center, and 
 automotive markets. It sells its products to original equipment manufacturers, original device manufacturers,   
 system integrators and distributors, independent software vendors, cloud service providers, consumer internet   
 companies, add-in board manufacturers, distributors, automotive manufacturers and tier-1 automotive suppliers,  
 and other ecosystem participants. NVIDIA Corporation was incorporated in 1993 and is headquartered in Santa     
 Clara, California.",                                                                                            
     18→    "fullTimeEmployees": 36000,                                                                          
     19→    "companyOfficers": [                                                                                 
     20→      {                                                                                                  
     21→        "maxAge": 1,                                                                                     
     22→        "name": "Mr. Jen-Hsun  Huang",                                                                   
     23→        "age": 61,                                                                                       
     24→        "title": "Co-Founder, CEO, President & Director",                                                
     25→        "yearBorn": 1963,                                                                                
     26→        "fiscalYear": 2025,                                                                              
     27→        "totalPay": 11054945,                                                                            
     28→        "exercisedValue": 0,                                                                             
     29→        "unexercisedValue": 0                                                                            
     30→      },                                                                                                 
     31→      {                                                                                                  
     32→        "maxAge": 1,                                                                                     
     33→        "name": "Ms. Colette M. Kress",                                                                  
     34→        "age": 57,                                                                                       
     35→        "title": "Executive VP & CFO",                                                                   
     36→        "yearBorn": 1967,                                                                                
     37→        "fiscalYear": 2025,                                                                              
     38→        "totalPay": 1512641,                                                                             
     39→        "exercisedValue": 0,                                                                             
     40→        "unexercisedValue": 0                                                                            
     41→      },                                                                                                 
     42→      {                                                                                                  
     43→        "maxAge": 1,                                                                                     
     44→        "name": "Ms. Debora  Shoquist",                                                                  
     45→        "age": 69,                                                                                       
     46→        "title": "Executive Vice President of Operations",                                               
     47→        "yearBorn": 1955,                                                                                
     48→        "fiscalYear": 2025,                                                                              
     49→        "totalPay": 1379071,                                                                             
     50→        "exercisedValue": 0,                                                                             
     51→        "unexercisedValue": 0                                                                            
     52→      },                                                                                                 
     53→      {                                                                                                  
     54→        "maxAge": 1,                                                                                     
     55→        "name": "Mr. Timothy S. Teter J.D.",                                                             
     56→        "age": 57,                                                                                       
     57→        "title": "Executive VP, General Counsel & Secretary",                                            
     58→        "yearBorn": 1967,                                                                                
     59→        "fiscalYear": 2025,                                                                              
     60→        "totalPay": 1362989,                                                                             
     61→        "exercisedValue": 0,                                                                             
     62→        "unexercisedValue": 0                                                                            
     63→      },                                                                                                 
     64→      {                                                                                                  
     65→        "maxAge": 1,                                                                                     
     66→        "name": "Mr. Ajay K. Puri",                                                                      
     67→        "age": 69,                                                                                       
     68→        "title": "Executive Vice President of Worldwide Field Operations",                               
     69→        "yearBorn": 1955,                                                                                
     70→        "fiscalYear": 2025,                                                                              
     71→        "totalPay": 2313851,                                                                             
     72→        "exercisedValue": 0,                                                                             
     73→        "unexercisedValue": 0                                                                            
     74→      },                                                                                                 
     75→      {                                                                                                  
     76→        "maxAge": 1,                                                                                     
     77→        "name": "Mr. Chris A. Malachowsky",                                                              
     78→        "title": "Co-Founder",                                                                           
     79→        "fiscalYear": 2025,                                                                              
     80→        "totalPay": 320000,                                                                              
     81→        "exercisedValue": 0,                                                                             
     82→        "unexercisedValue": 0                                                                            
     83→      },                                                                                                 
     84→      {                                                                                                  
     85→        "maxAge": 1,                                                                                     
     86→        "name": "Mr. Donald F. Robertson Jr.",                                                           
     87→        "age": 55,                                                                                       
     88→        "title": "VP & Chief Accounting Officer",                                                        
     89→        "yearBorn": 1969,                                                                                
     90→        "fiscalYear": 2025,                                                                              
     91→        "exercisedValue": 0,                                                                             
     92→        "unexercisedValue": 0                                                                            
     93→      },                                                                                                 
     94→      {                                                                                                  
     95→        "maxAge": 1,                                                                                     
     96→        "name": "Prof. William J. Dally Ph.D.",                                                          
     97→        "age": 63,                                                                                       
     98→        "title": "Chief Scientist & Senior VP of Research",                                              
     99→        "yearBorn": 1961,                                                                                
    100→        "fiscalYear": 2025,                                                                              
    101→        "exercisedValue": 0,                                                                             
    102→        "unexercisedValue": 0                                                                            
    103→      },                                                                                                 
    104→      {                                                                                                  
    105→        "maxAge": 1,                                                                                     
    106→        "name": "Mr. Toshiya  Hari",                                                                     
    107→        "title": "Vice President of Investor Relations & Strategic Finance",                             
    108→        "fiscalYear": 2025,                                                                              
    109→        "exercisedValue": 0,                                                                             
    110→        "unexercisedValue": 0                                                                            
    111→      },                                                                                                 
    112→      {                                                                                                  
    113→        "maxAge": 1,                                                                                     
    114→        "name": "Ms. Mylene  Mangalindan",                                                               
    115→        "title": "VP of Corporate Communications",                                                       
    116→        "fiscalYear": 2025,                                                                              
    117→        "exercisedValue": 0,                                                                             
    118→        "unexercisedValue": 0                                                                            
    119→      }                                                                                                  
    120→    ],                                                                                                   
    121→    "auditRisk": 5,                                                                                      
    122→    "boardRisk": 10,                                                                                     
    123→    "compensationRisk": 4,                                                                               
    124→    "shareHolderRightsRisk": 8,                                                                          
    125→    "overallRisk": 8,                                                                                    
    126→    "governanceEpochDate": 1761955200,                                                                   
    127→    "compensationAsOfEpochDate": 1767139200,                                                             
    128→    "irWebsite": "http://phx.corporate-ir.net/phoenix.zhtml?c=116466&p=irol-IRHome",                     
    129→    "executiveTeam": [],                                                                                 
    130→    "maxAge": 86400,                                                                                     
    131→    "priceHint": 2,                                                                                      
    132→    "previousClose": 180.26,                                                                             
    133→    "open": 178.99,                                                                                      
    134→    "dayLow": 176.5,                                                                                     
    135→    "dayHigh": 179.29,                                                                                   
    136→    "regularMarketPreviousClose": 180.26,                                                                
    137→    "regularMarketOpen": 178.99,                                                                         
    138→    "regularMarketDayLow": 176.5,                                                                        
    139→    "regularMarketDayHigh": 179.29,                                                                      
    140→    "dividendRate": 0.04,                                                                                
    141→    "dividendYield": 0.02,                                                                               
    142→    "exDividendDate": 1764806400,                                                                        
    143→    "payoutRatio": 0.0099,                                                                               
    144→    "fiveYearAvgDividendYield": 0.06,                                                                    
    145→    "beta": 2.269,                                                                                       
    146→    "trailingPE": 43.811882,                                                                             
    147→    "forwardPE": 42.961166,                                                                              
    148→    "volume": 88821795,                                                                                  
    149→    "regularMarketVolume": 88821795,                                                                     
    150→    "averageVolume": 191772396,                                                                          
    151→    "averageVolume10days": 239390050,                                                                    
    152→    "averageDailyVolume10Day": 239390050,                                                                
    153→    "bid": 170.03,                                                                                       
    154→    "ask": 177.02,                                                                                       
    155→    "bidSize": 1,                                                                                        
    156→    "askSize": 1,                                                                                        
    157→    "marketCap": 4301985153024,                                                                          
    158→    "fiftyTwoWeekLow": 86.62,                                                                            
    159→    "fiftyTwoWeekHigh": 212.19,                                                                          
    160→    "allTimeHigh": 212.19,                                                                               
    161→    "allTimeLow": 0.033333,                                                                              
    162→    "priceToSalesTrailing12Months": 22.987812,                                                           
    163→    "fiftyDayAverage": 186.8298,                                                                         
    164→    "twoHundredDayAverage": 153.668,                                                                     
    165→    "trailingAnnualDividendRate": 0.04,                                                                  
    166→    "trailingAnnualDividendYield": 0.0002219017,                                                         
    167→    "currency": "USD",                                                                                   
    168→    "tradeable": false,                                                                                  
    169→    "enterpriseValue": 4251314028544,                                                                    
    170→    "profitMargins": 0.53007,                                                                            
    171→    "floatShares": 23328729000,                                                                          
    172→    "sharesOutstanding": 24305000000,                                                                    
    173→    "sharesShort": 237153736,                                                                            
    174→    "sharesShortPriorMonth": 210957056,                                                                  
    175→    "sharesShortPreviousMonthDate": 1760486400,                                                          
    176→    "dateShortInterest": 1763078400,                                                                     
    177→    "sharesPercentSharesOut": 0.0098,                                                                    
    178→    "heldPercentInsiders": 0.0433,                                                                       
    179→    "heldPercentInstitutions": 0.69321996,                                                               
    180→    "shortRatio": 1.27,                                                                                  
    181→    "shortPercentOfFloat": 0.010199999,                                                                  
    182→    "impliedSharesOutstanding": 24305000000,                                                             
    183→    "bookValue": 4.892,                                                                                  
    184→    "priceToBook": 36.18152,                                                                             
    185→    "lastFiscalYearEnd": 1737849600,                                                                     
    186→    "nextFiscalYearEnd": 1769385600,                                                                     
    187→    "mostRecentQuarter": 1761436800,                                                                     
    188→    "earningsQuarterlyGrowth": 0.653,                                                                    
    189→    "netIncomeToCommon": 99198001152,                                                                    
    190→    "trailingEps": 4.04,                                                                                 
    191→    "forwardEps": 4.12,                                                                                  
    192→    "lastSplitFactor": "10:1",                                                                           
    193→    "lastSplitDate": 1717977600,                                                                         
    194→    "enterpriseToRevenue": 22.717,                                                                       
    195→    "enterpriseToEbitda": 37.724,                                                                        
    196→    "52WeekChange": 0.2767799,                                                                           
    197→    "SandP52WeekChange": 0.1326145,                                                                      
    198→    "lastDividendValue": 0.01,                                                                           
    199→    "lastDividendDate": 1757548800,                                                                      
    200→    "quoteType": "EQUITY",                                                                               
    201→    "currentPrice": 177.0,                                                                               
    202→    "targetHighPrice": 352.0,                                                                            
    203→    "targetLowPrice": 140.0,                                                                             
    204→    "targetMeanPrice": 250.66142,                                                                        
    205→    "targetMedianPrice": 250.0,                                                                          
    206→    "recommendationMean": 1.32812,                                                                       
    207→    "recommendationKey": "strong_buy",                                                                   
    208→    "numberOfAnalystOpinions": 56,                                                                       
    209→    "totalCash": 60608000000,                                                                            
    210→    "totalCashPerShare": 2.494,                                                                          
    211→    "ebitda": 112696000512,                                                                              
    212→    "totalDebt": 10821999616,                                                                            
    213→    "quickRatio": 3.605,                                                                                 
    214→    "currentRatio": 4.468,                                                                               
    215→    "totalRevenue": 187141996544,                                                                        
    216→    "debtToEquity": 9.102,                                                                               
    217→    "revenuePerShare": 7.668,                                                                            
    218→    "returnOnAssets": 0.53528,                                                                           
    219→    "returnOnEquity": 1.07359,                                                                           
    220→    "grossProfits": 131092996096,                                                                        
    221→    "freeCashflow": 53282873344,                                                                         
    222→    "operatingCashflow": 83158999040,                                                                    
    223→    "earningsGrowth": 0.667,                                                                             
    224→    "revenueGrowth": 0.625,                                                                              
    225→    "grossMargins": 0.7005,                                                                              
    226→    "ebitdaMargins": 0.60220003,                                                                         
    227→    "operatingMargins": 0.63168997,                                                                      
    228→    "financialCurrency": "USD",                                                                          
    229→    "symbol": "NVDA",                                                                                    
    230→    "language": "en-US",                                                                                 
    231→    "region": "US",                                                                                      
    232→    "typeDisp": "Equity",                                                                                
    233→    "quoteSourceName": "Nasdaq Real Time Price",                                                         
    234→    "triggerable": true,                                                                                 
    235→    "customPriceAlertConfidence": "HIGH",                                                                
    236→    "longName": "NVIDIA Corporation",                                                                    
    237→    "corporateActions": [],                                                                              
    238→    "preMarketTime": 1764582494,                                                                         
    239→    "regularMarketTime": 1764352802,                                                                     
    240→    "exchange": "NMS",                                                                                   
    241→    "messageBoardId": "finmb_32307",                                                                     
    242→    "exchangeTimezoneName": "America/New_York",                                                          
    243→    "exchangeTimezoneShortName": "EST",                                                                  
    244→    "gmtOffSetMilliseconds": -18000000,                                                                  
    245→    "market": "us_market",                                                                               
    246→    "esgPopulated": false,                                                                               
    247→    "regularMarketChangePercent": -1.8084958,                                                            
    248→    "regularMarketPrice": 177.0,                                                                         
    249→    "prevName": "Usual Stablecoin",                                                                      
    250→    "nameChangeDate": "2025-11-30",                                                                      
    251→    "averageAnalystRating": "1.3 - Strong Buy",                                                          
    252→    "cryptoTradeable": false,                                                                            
    253→    "marketState": "PRE",                                                                                
    254→    "hasPrePostMarketData": true,                                                                        
    255→    "firstTradeDateMilliseconds": 917015400000,                                                          
    256→    "preMarketChange": -1.9299927,                                                                       
    257→    "preMarketChangePercent": -1.0905145,                                                                
    258→    "preMarketPrice": 175.05,                                                                            
    259→    "regularMarketChange": -3.2599945,                                                                   
    260→    "regularMarketDayRange": "176.5 - 179.29",                                                           
    261→    "fullExchangeName": "NasdaqGS",                                                                      
    262→    "averageDailyVolume3Month": 191772396,                                                               
    263→    "fiftyTwoWeekLowChange": 90.38,                                                                      
    264→    "fiftyTwoWeekLowChangePercent": 1.0434079,                                                           
    265→    "fiftyTwoWeekRange": "86.62 - 212.19",                                                               
    266→    "fiftyTwoWeekHighChange": -35.190002,                                                                
    267→    "fiftyTwoWeekHighChangePercent": -0.16584194,                                                        
    268→    "fiftyTwoWeekChangePercent": 27.67799,                                                               
    269→    "dividendDate": 1766707200,                                                                          
    270→    "earningsTimestamp": 1763586000,                                                                     
    271→    "earningsTimestampStart": 1763586000,                                                                
    272→    "earningsTimestampEnd": 1763586000,                                                                  
    273→    "earningsCallTimestampStart": 1763589600,                                                            
    274→    "earningsCallTimestampEnd": 1763589600,                                                              
    275→    "isEarningsDateEstimate": false,                                                                     
    276→    "epsTrailingTwelveMonths": 4.04,                                                                     
    277→    "epsForward": 4.12,                                                                                  
    278→    "epsCurrentYear": 4.68543,                                                                           
    279→    "priceEpsCurrentYear": 37.77668,                                                                     
    280→    "fiftyDayAverageChange": -9.829803,                                                                  
    281→    "fiftyDayAverageChangePercent": -0.05261368,                                                         
    282→    "twoHundredDayAverageChange": 23.332,                                                                
    283→    "twoHundredDayAverageChangePercent": 0.15183383,                                                     
    284→    "sourceInterval": 15,                                                                                
    285→    "exchangeDataDelayedBy": 0,                                                                          
    286→    "shortName": "NVIDIA Corporation",                                                                   
    287→    "displayName": "NVIDIA",                                                                             
    288→    "trailingPegRatio": 0.6751                                                                           
    289→  }                                                                                                      
    290→}                                                                                                        
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "data/amd_info.json",                                                                            
   "offset": 1,                                                                                                  
   "limit": 200                                                                                                  
 }                                                                                                               
    ID: call_KlSNNyDUqK1xR44YK9vR4Jha                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
      1→{                                                                                                        
      2→  "ticker": "AMD",                                                                                       
      3→  "info": {                                                                                              
      4→    "address1": "2485 Augustine Drive",                                                                  
      5→    "city": "Santa Clara",                                                                               
      6→    "state": "CA",                                                                                       
      7→    "zip": "95054",                                                                                      
      8→    "country": "United States",                                                                          
      9→    "phone": "408 749 4000",                                                                             
     10→    "website": "https://www.amd.com",                                                                    
     11→    "industry": "Semiconductors",                                                                        
     12→    "industryKey": "semiconductors",                                                                     
     13→    "industryDisp": "Semiconductors",                                                                    
     14→    "sector": "Technology",                                                                              
     15→    "sectorKey": "technology",                                                                           
     16→    "sectorDisp": "Technology",                                                                          
     17→    "longBusinessSummary": "Advanced Micro Devices, Inc. operates as a semiconductor company worldwide.  
 It operates in three segments: Data Center, Client and Gaming, and Embedded. The company offers artificial      
 intelligence (AI) accelerators, x86 microprocessors, and graphics processing units (GPUs) as standalone devices 
 or as incorporated into accelerated processing units, chipsets, and data center and professional GPUs; and      
 embedded processors and semi-custom system-on-chip (SoC) products, microprocessor and SoC development services  
 and technology, data processing units, field programmable gate arrays (FPGA), system on modules, smart network  
 interface cards, and adaptive SoC products. It provides processors under the AMD Ryzen, AMD Ryzen AI, AMD Ryzen 
 PRO, AMD Ryzen Threadripper, AMD Ryzen Threadripper PRO, AMD Athlon, and AMD PRO A-Series brands; graphics      
 under the AMD Radeon graphics and AMD Embedded Radeon graphics; professional graphics under the AMD Radeon Pro  
 graphics brand; and AI and general-purpose compute infrastructure for hyperscale providers. The company offers  
 data center graphics under the AMD Instinct accelerators and Radeon PRO V-series brands; server microprocessors 
 under the AMD EPYC brand; low power solutions under the AMD Athlon, AMD Geode, AMD Ryzen, AMD EPYC, and AMD     
 R-Series and G-Series brands; FPGA products under the Virtex-6, Virtex-7, Virtex UltraScale+, Kintex-7, Kintex  
 UltraScale, Kintex UltraScale+, Artix-7, Artix UltraScale+, Spartan-6, and Spartan-7 brands; adaptive SOCs      
 under the Zynq-7000, Zynq UltraScale+ MPSoC, Zynq UltraScale+ RFSoCs, Versal HBM, Versal Premium, Versal Prime, 
 Versal AI Core, Versal AI Edge, Vitis, and Vivado brands; and compute and network acceleration board products   
 under the Alveo and Pensando brands. It serves original equipment and design manufacturers, public cloud        
 service providers, system integrators, distributors, and add-in-board manufacturers. The company was            
 incorporated in 1969 and is headquartered in Santa Clara, California.",                                         
     18→    "fullTimeEmployees": 28000,                                                                          
     19→    "companyOfficers": [                                                                                 
     20→      {                                                                                                  
     21→        "maxAge": 1,                                                                                     
     22→        "name": "Dr. Lisa T. Su Ph.D.",                                                                  
     23→        "age": 54,                                                                                       
     24→        "title": "Chair, President & CEO",                                                               
     25→        "yearBorn": 1970,                                                                                
     26→        "fiscalYear": 2024,                                                                              
     27→        "totalPay": 3062598,                                                                             
     28→        "exercisedValue": 47792792,                                                                      
     29→        "unexercisedValue": 29753624                                                                     
     30→      },                                                                                                 
     31→      {                                                                                                  
     32→        "maxAge": 1,                                                                                     
     33→        "name": "Ms. Jean X. Hu Ph.D.",                                                                  
     34→        "age": 61,                                                                                       
     35→        "title": "Executive VP, CFO, Treasurer & Interim Chief Accounting Officer",                      
     36→        "yearBorn": 1963,                                                                                
     37→        "fiscalYear": 2024,                                                                              
     38→        "totalPay": 1429427,                                                                             
     39→        "exercisedValue": 0,                                                                             
     40→        "unexercisedValue": 97947                                                                        
     41→      },                                                                                                 
     42→      {                                                                                                  
     43→        "maxAge": 1,                                                                                     
     44→        "name": "Mr. Mark D. Papermaster",                                                               
     45→        "age": 62,                                                                                       
     46→        "title": "CTO and Executive VP of Technology & Engineering",                                     
     47→        "yearBorn": 1962,                                                                                
     48→        "fiscalYear": 2024,                                                                              
     49→        "totalPay": 1694362,                                                                             
     50→        "exercisedValue": 15503578,                                                                      
     51→        "unexercisedValue": 20029298                                                                     
     52→      },                                                                                                 
     53→      {                                                                                                  
     54→        "maxAge": 1,                                                                                     
     55→        "name": "Ms. Ava M. Hahn J.D.",                                                                  
     56→        "age": 51,                                                                                       
     57→        "title": "Senior VP, General Counsel & Corporate Secretary",                                     
     58→        "yearBorn": 1973,                                                                                
     59→        "fiscalYear": 2024,                                                                              
     60→        "totalPay": 2978858,                                                                             
     61→        "exercisedValue": 0,                                                                             
     62→        "unexercisedValue": 0                                                                            
     63→      },                                                                                                 
     64→      {                                                                                                  
     65→        "maxAge": 1,                                                                                     
     66→        "name": "Mr. Forrest E. Norrod",                                                                 
     67→        "age": 59,                                                                                       
     68→        "title": "Executive VP & GM of Data Center Solutions Business Unit",                             
     69→        "yearBorn": 1965,                                                                                
     70→        "fiscalYear": 2024,                                                                              
     71→        "totalPay": 1428233,                                                                             
     72→        "exercisedValue": 9752057,                                                                       
     73→        "unexercisedValue": 4760712                                                                      
     74→      },                                                                                                 
     75→      {                                                                                                  
     76→        "maxAge": 1,                                                                                     
     77→        "name": "Mr. Keivan  Keshvari",                                                                  
     78→        "title": "Senior Vice President of Global Operations",                                           
     79→        "fiscalYear": 2024,                                                                              
     80→        "exercisedValue": 0,                                                                             
     81→        "unexercisedValue": 0                                                                            
     82→      },                                                                                                 
     83→      {                                                                                                  
     84→        "maxAge": 1,                                                                                     
     85→        "name": "Mr. Hasmukh  Ranjan",                                                                   
     86→        "title": "Senior VP & Chief Information Officer",                                                
     87→        "fiscalYear": 2024,                                                                              
     88→        "exercisedValue": 0,                                                                             
     89→        "unexercisedValue": 0                                                                            
     90→      },                                                                                                 
     91→      {                                                                                                  
     92→        "maxAge": 1,                                                                                     
     93→        "name": "Ms. Ruth  Cotter",                                                                      
     94→        "title": "Senior VP & Chief Administrative Officer",                                             
     95→        "fiscalYear": 2024,                                                                              
     96→        "exercisedValue": 0,                                                                             
     97→        "unexercisedValue": 0                                                                            
     98→      },                                                                                                 
     99→      {                                                                                                  
    100→        "maxAge": 1,                                                                                     
    101→        "name": "Mr. Matthew D. Ramsay",                                                                 
    102→        "title": "Vice President of Financial Strategy & Investor Relations",                            
    103→        "fiscalYear": 2024,                                                                              
    104→        "exercisedValue": 0,                                                                             
    105→        "unexercisedValue": 0                                                                            
    106→      },                                                                                                 
    107→      {                                                                                                  
    108→        "maxAge": 1,                                                                                     
    109→        "name": "Mr. Paul Darren Grasby",                                                                
    110→        "age": 54,                                                                                       
    111→        "title": "Executive VP, Chief Sales Officer & President AMD EMEA",                               
    112→        "yearBorn": 1970,                                                                                
    113→        "fiscalYear": 2024,                                                                              
    114→        "totalPay": 921473,                                                                              
    115→        "exercisedValue": 1077205,                                                                       
    116→        "unexercisedValue": 432646                                                                       
    117→      }                                                                                                  
    118→    ],                                                                                                   
    119→    "auditRisk": 7,                                                                                      
    120→    "boardRisk": 4,                                                                                      
    121→    "compensationRisk": 9,                                                                               
    122→    "shareHolderRightsRisk": 3,                                                                          
    123→    "overallRisk": 6,                                                                                    
    124→    "governanceEpochDate": 1761955200,                                                                   
    125→    "compensationAsOfEpochDate": 1735603200,                                                             
    126→    "irWebsite": "http://phx.corporate-ir.net/phoenix.zhtml?c=74093&p=irol-IRHome",                      
    127→    "executiveTeam": [],                                                                                 
    128→    "maxAge": 86400,                                                                                     
    129→    "priceHint": 2,                                                                                      
    130→    "previousClose": 214.24,                                                                             
    131→    "open": 216.395,                                                                                     
    132→    "dayLow": 214.0322,                                                                                  
    133→    "dayHigh": 218.3,                                                                                    
    134→    "regularMarketPreviousClose": 214.24,                                                                
    135→    "regularMarketOpen": 216.395,                                                                        
    136→    "regularMarketDayLow": 214.0322,                                                                     
    137→    "regularMarketDayHigh": 218.3,                                                                       
    138→    "exDividendDate": 798940800,                                                                         
    139→    "payoutRatio": 0.0,                                                                                  
    140→    "beta": 1.913,                                                                                       
    141→    "trailingPE": 113.89005,                                                                             
    142→    "forwardPE": 42.652943,                                                                              
    143→    "volume": 14756280,                                                                                  
    144→    "regularMarketVolume": 14756280,                                                                     
    145→    "averageVolume": 59143650,                                                                           
    146→    "averageVolume10days": 49552640,                                                                     
    147→    "averageDailyVolume10Day": 49552640,                                                                 
    148→    "bid": 215.0,                                                                                        
    149→    "ask": 218.07,                                                                                       
    150→    "bidSize": 1,                                                                                        
    151→    "askSize": 2,                                                                                        
    152→    "marketCap": 354147893248,                                                                           
    153→    "fiftyTwoWeekLow": 76.48,                                                                            
    154→    "fiftyTwoWeekHigh": 267.08,                                                                          
    155→    "allTimeHigh": 267.08,                                                                               
    156→    "allTimeLow": 1.61,                                                                                  
    157→    "priceToSalesTrailing12Months": 11.057792,                                                           
    158→    "fiftyDayAverage": 218.7962,                                                                         
    159→    "twoHundredDayAverage": 150.51225,                                                                   
    160→    "trailingAnnualDividendRate": 0.0,                                                                   
    161→    "trailingAnnualDividendYield": 0.0,                                                                  
    162→    "currency": "USD",                                                                                   
    163→    "tradeable": false,                                                                                  
    164→    "enterpriseValue": 350774886400,                                                                     
    165→    "profitMargins": 0.10323,                                                                            
    166→    "floatShares": 1617491831,                                                                           
    167→    "sharesOutstanding": 1628041540,                                                                     
    168→    "sharesShort": 40737550,                                                                             
    169→    "sharesShortPriorMonth": 38861080,                                                                   
    170→    "sharesShortPreviousMonthDate": 1760486400,                                                          
    171→    "dateShortInterest": 1763078400,                                                                     
    172→    "sharesPercentSharesOut": 0.025,                                                                     
    173→    "heldPercentInsiders": 0.00449,                                                                      
    174→    "heldPercentInstitutions": 0.69945997,                                                               
    175→    "shortRatio": 0.69,                                                                                  
    176→    "shortPercentOfFloat": 0.0251,                                                                       
    177→    "impliedSharesOutstanding": 1628041540,                                                              
    178→    "bookValue": 37.34,                                                                                  
    179→    "priceToBook": 5.825656,                                                                             
    180→    "lastFiscalYearEnd": 1735344000,                                                                     
    181→    "nextFiscalYearEnd": 1766880000,                                                                     
    182→    "mostRecentQuarter": 1758931200,                                                                     
    183→    "earningsQuarterlyGrowth": 0.612,                                                                    
    184→    "netIncomeToCommon": 3131000064,                                                                     
    185→    "trailingEps": 1.91,                                                                                 
    186→    "forwardEps": 5.1,                                                                                   
    187→    "lastSplitFactor": "2:1",                                                                            
    188→    "lastSplitDate": 966902400,                                                                          
    189→    "enterpriseToRevenue": 10.952,                                                                       
    190→    "enterpriseToEbitda": 57.941,                                                                        
    191→    "52WeekChange": 0.5312544,                                                                           
    192→    "SandP52WeekChange": 0.1326145,                                                                      
    193→    "quoteType": "EQUITY",                                                                               
    194→    "currentPrice": 217.53,                                                                              
    195→    "targetHighPrice": 380.0,                                                                            
    196→    "targetLowPrice": 178.0,                                                                             
    197→    "targetMeanPrice": 283.56512,                                                                        
    198→    "targetMedianPrice": 290.0,                                                                          
    199→    "recommendationMean": 1.54902,                                                                       
    200→    "recommendationKey": "buy",                                                                          
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "data/amd_info.json",                                                                            
   "offset": 200,                                                                                                
   "limit": 200                                                                                                  
 }                                                                                                               
    ID: call_aCIcY8emp4hRoqKDW8ZgNMiK                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
    200→    "recommendationKey": "buy",                                                                          
    201→    "numberOfAnalystOpinions": 43,                                                                       
    202→    "totalCash": 7242999808,                                                                             
    203→    "totalCashPerShare": 4.449,                                                                          
    204→    "ebitda": 6054000128,                                                                                
    205→    "totalDebt": 3870000128,                                                                             
    206→    "quickRatio": 1.176,                                                                                 
    207→    "currentRatio": 2.308,                                                                               
    208→    "totalRevenue": 32027000832,                                                                         
    209→    "debtToEquity": 6.366,                                                                               
    210→    "revenuePerShare": 19.733,                                                                           
    211→    "returnOnAssets": 0.025980001,                                                                       
    212→    "returnOnEquity": 0.05317,                                                                           
    213→    "grossProfits": 16480000000,                                                                         
    214→    "freeCashflow": 3245499904,                                                                          
    215→    "operatingCashflow": 6408000000,                                                                     
    216→    "earningsGrowth": 0.603,                                                                             
    217→    "revenueGrowth": 0.356,                                                                              
    218→    "grossMargins": 0.51457,                                                                             
    219→    "ebitdaMargins": 0.18902999,                                                                         
    220→    "operatingMargins": 0.13736,                                                                         
    221→    "financialCurrency": "USD",                                                                          
    222→    "symbol": "AMD",                                                                                     
    223→    "language": "en-US",                                                                                 
    224→    "region": "US",                                                                                      
    225→    "typeDisp": "Equity",                                                                                
    226→    "quoteSourceName": "Nasdaq Real Time Price",                                                         
    227→    "triggerable": true,                                                                                 
    228→    "customPriceAlertConfidence": "HIGH",                                                                
    229→    "marketState": "PRE",                                                                                
    230→    "longName": "Advanced Micro Devices, Inc.",                                                          
    231→    "shortName": "Advanced Micro Devices, Inc.",                                                         
    232→    "corporateActions": [],                                                                              
    233→    "preMarketTime": 1764582484,                                                                         
    234→    "regularMarketTime": 1764352802,                                                                     
    235→    "regularMarketChangePercent": 1.5356578,                                                             
    236→    "regularMarketPrice": 217.53,                                                                        
    237→    "priceEpsCurrentYear": 54.87722,                                                                     
    238→    "fiftyDayAverageChange": -1.2662048,                                                                 
    239→    "fiftyDayAverageChangePercent": -0.0057871426,                                                       
    240→    "twoHundredDayAverageChange": 67.017746,                                                             
    241→    "twoHundredDayAverageChangePercent": 0.4452644,                                                      
    242→    "sourceInterval": 15,                                                                                
    243→    "exchangeDataDelayedBy": 0,                                                                          
    244→    "averageAnalystRating": "1.5 - Buy",                                                                 
    245→    "cryptoTradeable": false,                                                                            
    246→    "averageDailyVolume3Month": 59143650,                                                                
    247→    "fiftyTwoWeekLowChange": 141.04999,                                                                  
    248→    "fiftyTwoWeekLowChangePercent": 1.8442727,                                                           
    249→    "fiftyTwoWeekRange": "76.48 - 267.08",                                                               
    250→    "fiftyTwoWeekHighChange": -49.549988,                                                                
    251→    "fiftyTwoWeekHighChangePercent": -0.1855249,                                                         
    252→    "fiftyTwoWeekChangePercent": 53.125443,                                                              
    253→    "earningsTimestamp": 1762290000,                                                                     
    254→    "earningsTimestampStart": 1762290000,                                                                
    255→    "earningsTimestampEnd": 1762290000,                                                                  
    256→    "earningsCallTimestampStart": 1762293600,                                                            
    257→    "earningsCallTimestampEnd": 1762293600,                                                              
    258→    "isEarningsDateEstimate": false,                                                                     
    259→    "epsTrailingTwelveMonths": 1.91,                                                                     
    260→    "epsForward": 5.1,                                                                                   
    261→    "epsCurrentYear": 3.96394,                                                                           
    262→    "exchange": "NMS",                                                                                   
    263→    "messageBoardId": "finmb_168864",                                                                    
    264→    "exchangeTimezoneName": "America/New_York",                                                          
    265→    "exchangeTimezoneShortName": "EST",                                                                  
    266→    "gmtOffSetMilliseconds": -18000000,                                                                  
    267→    "market": "us_market",                                                                               
    268→    "esgPopulated": false,                                                                               
    269→    "hasPrePostMarketData": true,                                                                        
    270→    "firstTradeDateMilliseconds": 322151400000,                                                          
    271→    "preMarketChange": -2.2899933,                                                                       
    272→    "preMarketChangePercent": -1.0532094,                                                                
    273→    "preMarketPrice": 215.14,                                                                            
    274→    "regularMarketChange": 3.2899933,                                                                    
    275→    "regularMarketDayRange": "214.0322 - 218.3",                                                         
    276→    "fullExchangeName": "NasdaqGS",                                                                      
    277→    "displayName": "Advanced Micro Devices",                                                             
    278→    "trailingPegRatio": 0.4826                                                                           
    279→  }                                                                                                      
    280→}                                                                                                        
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: execute_code                                                                                      
    Args: {                                                                                                      
   "code": "import json\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom datetime import              
 datetime\n\nwith open('data/nvidia_amd_history.json') as f:\n    history = json.load(f)\n\nnvda_df =            
 pd.DataFrame(history['data']['NVDA']['history'])\namd_df =                                                      
 pd.DataFrame(history['data']['AMD']['history'])\n\nfor df in (nvda_df, amd_df):\n    df['date'] =               
 pd.to_datetime(df['date'])\n    df.sort_values('date', inplace=True)\n\n\nfig, axes = plt.subplots(2, 2,        
 figsize=(14, 10), constrained_layout=True)\n\n# Price lines\naxes[0, 0].plot(nvda_df['date'], nvda_df['close'], 
 label='NVDA', color='#76b900', linewidth=2)\naxes[0, 0].plot(amd_df['date'], amd_df['close'], label='AMD',      
 color='#ff6600', linewidth=2)\naxes[0, 0].set_title('Closing Price: Past Year')\naxes[0,                        
 0].set_ylabel('USD')\naxes[0, 0].legend()\naxes[0, 0].grid(True)\n\n# Volume\naxes[0, 1].plot(nvda_df['date'],  
 nvda_df['volume'] / 1e6, label='NVDA', color='#76b900')\naxes[0, 1].plot(amd_df['date'], amd_df['volume'] /     
 1e6, label='AMD', color='#ff6600')\naxes[0, 1].set_title('Daily Volume (Millions)')\naxes[0,                    
 1].set_ylabel('Shares (M)')\naxes[0, 1].legend()\naxes[0, 1].grid(True)\n\n# Fundamental metrics\nwith          
 open('data/nvda_info.json') as f:\n    nvda_info = json.load(f)['info']\nwith open('data/amd_info.json') as     
 f:\n    amd_info = json.load(f)['info']\n\nvaluation_metrics = ['trailingPE', 'forwardPE',                      
 'priceToBook']\nprofit_metrics = ['profitMargins', 'grossMargins', 'revenueGrowth']\n\nval_data = {\n           
 'Metric': [\"Trailing P/E\", \"Forward P/E\", \"Price / Book\"],\n    'NVDA': ,\n    'AMD': ,\n}\nprof_data =   
 {\n    'Metric': [\"Profit Margin\", \"Gross Margin\", \"Revenue Growth\"],\n    'NVDA': ,\n    'AMD':          
 ,\n}\n\nval_df = pd.DataFrame(val_data)\nprof_df = pd.DataFrame(prof_data)\n\nx = range(len(val_df))\nwidth =   
 0.35\naxes[1, 0].bar(, val_df['NVDA'], width=width, label='NVDA', color='#76b900')\naxes[1, 0].bar(,            
 val_df['AMD'], width=width, label='AMD', color='#ff6600')\naxes[1, 0].set_xticks(x)\naxes[1,                    
 0].set_xticklabels(val_df['Metric'])\naxes[1, 0].set_title('Valuation Metrics')\naxes[1, 0].legend()\naxes[1,   
 0].grid(axis='y')\n\nx2 = range(len(prof_df))\naxes[1, 1].bar(, prof_df['NVDA'], width=width, label='NVDA',     
 color='#76b900')\naxes[1, 1].bar(, prof_df['AMD'], width=width, label='AMD', color='#ff6600')\naxes[1,          
 1].set_xticks(x2)\naxes[1, 1].set_xticklabels(prof_df['Metric'])\naxes[1, 1].set_title('Profitability &         
 Growth')\naxes[1, 1].legend()\naxes[1, 1].grid(axis='y')\n\n# Formatting percentages for bottom-right           
 bars\naxes[1, 1].set_ylim(0, max(max(prof_df['NVDA']), max(prof_df['AMD'])) * 1.2)\naxes[1,                     
 1].set_ylabel('Ratio / Growth')\n\n# Save figure\nfig.suptitle('NVDA vs AMD: Price, Volume, and Fundamentals',  
 fontsize=16)\nplt.savefig('results/nvda_amd_comparison.png')\nprint('Chart saved to                             
 results/nvda_amd_comparison.png')"                                                                              
 }                                                                                                               
    ID: call_P7j34BiDbPA7oZhO4tqcd3Vy                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 SUCCESS                                                                                                         
 Chart saved to results/nvda_amd_comparison.png                                                                  
 Files created: results/nvda_amd_comparison.png                                                                  
                                                                                                                 
 Uploaded images:                                                                                                
 !(https://zexi-dev.s3.us-east-1.amazonaws.com/charts/exec_0002/nvda_amd_comparison.png)                         
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: execute_code                                                                                      
    Args: {                                                                                                      
   "code": "import pandas as pd\nimport json\n\nwith open('data/nvidia_amd_history.json') as f:\n    history =   
 json.load(f)\n\nnvda = pd.DataFrame(history['data']['NVDA']['history'])\namd =                                  
 pd.DataFrame(history['data']['AMD']['history'])\nfor df in (nvda, amd):\n    df['date'] =                       
 pd.to_datetime(df['date'])\n    df.sort_values('date', inplace=True)\n\ndef summarize(df):\n    first =         
 df.iloc[0]\n    last = df.iloc[-1]\n    start_price = first['close']\n    end_price = last['close']\n           
 pct_change = (end_price / start_price - 1) * 100\n    avg_vol = df['volume'].mean()\n    return start_price,    
 end_price, pct_change, avg_vol\n\nnvda_stats = summarize(nvda)\namd_stats = summarize(amd)\n\nprint('NVDA       
 Start:', nvda_stats[0], 'End:', nvda_stats[1], 'Change %:', nvda_stats[2])\nprint('NVDA Avg Volume:',           
 nvda_stats[3])\nprint('AMD Start:', amd_stats[0], 'End:', amd_stats[1], 'Change %:', amd_stats[2])\nprint('AMD  
 Avg Volume:', amd_stats[3])"                                                                                    
 }                                                                                                               
    ID: call_KMSJsOGE5hk9k9AYmWxVCfmL                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 SUCCESS                                                                                                         
 NVDA Start: 138.21 End: 177.0 Change %: 28.065986542218347                                                      
 NVDA Avg Volume: 223143054.0                                                                                    
 AMD Start: 137.18 End: 217.53 Change %: 58.57267823297856                                                       
 AMD Avg Volume: 49078907.2                                                                                      
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_todos                                                                                       
    Args: {                                                                                                      
   "todos": [                                                                                                    
     {                                                                                                           
       "content": "Collect the past year of price, volume, and fundamental data for NVDA and AMD via yfinance",  
       "status": "completed"                                                                                     
     },                                                                                                          
     {                                                                                                           
       "content": "Produce a 2x2 chart comparing price, volume, and key fundamentals for both stocks",           
       "status": "completed"                                                                                     
     },                                                                                                          
     {                                                                                                           
       "content": "Draft a professional comparison report summarizing findings and cite data sources",           
       "status": "in_progress"                                                                                   
     }                                                                                                           
   ]                                                                                                             
 }                                                                                                               
    ID: call_dh1nt0WwSDxEpKBhmtvwKw0x                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Updated todo list to [{'content': 'Collect the past year of price, volume, and fundamental data for NVDA and    
 AMD via yfinance', 'status': 'completed'}, {'content': 'Produce a 2x2 chart comparing price, volume, and key    
 fundamentals for both stocks', 'status': 'completed'}, {'content': 'Draft a professional comparison report      
 summarizing findings and cite data sources', 'status': 'in_progress'}]                                          
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_file                                                                                        
    Args: {                                                                                                      
   "file_path": "results/nvidia_amd_comparison.md",                                                              
   "content": "## Introduction\nThe following analysis reviews the last twelve months of trading for NVIDIA      
 (NVDA) and Advanced Micro Devices (AMD), focusing on price action, liquidity, and select fundamental metrics    
 that highlight valuation and profitability dynamics. The accompanying 2\u00d72 chart aggregates these           
 dimensions\u2014price, volume, and two fundamental comparison panels\u2014providing a visual reference for the  
 textual conclusions.\n\n## Price Performance Highlights\nNVIDIA closed the period around $177, which represents 
 a roughly 28.1% gain from one year ago; AMD finished nearer to $217, marking a 58.6% increase over the same     
 span [1][2]. The price plots (Figure 1, top-left) show NVDA maintaining a steadier uptrend following the spring 
 pullback, while AMD has exhibited steeper swings tied to cyclical demand in its data center and gaming end      
 markets.\n\n## Volume Dynamics\nAverage daily trading volume for NVDA (\u2248223 million shares) greatly        
 exceeds AMD\u2019s (\u224849 million shares), reflecting NVDA\u2019s larger float and heavier institutional     
 interest; both series are plotted on the top-right panel in millions of shares per session [1][2]. AMD\u2019s   
 lower relative liquidity magnifies the visible amplitude of price moves when volume spikes occur, whereas       
 NVDA\u2019s deeper market absorbs similar flows with more muted intraday swings.\n\n## Fundamental              
 Comparison\nThe lower-left panel contrasts valuation metrics: NVDA trades at about 43.8\u00d7 trailing EPS,     
 43.0\u00d7 forward EPS, and a 36.2 price/book multiple, while AMD sits at roughly 113.9\u00d7 trailing EPS,     
 42.7\u00d7 forward EPS, and 5.8 price/book [1][2]. The lower-right panel highlights profitability and growth:   
 NVDA delivers a profit margin near 53%, gross margin of 70%, and ~62.5% revenue growth, compared with           
 AMD\u2019s 10.3% profit margin, 51.5% gross margin, and ~35.6% revenue growth [1][2]. These contrasts           
 underscore NVDA\u2019s premium valuation tied to superior margin expansion and revenue acceleration, whereas    
 AMD is priced with a higher trailing P/E but offers a materially cheaper book value multiple.\n\n##             
 Chart\n![NVDA vs AMD                                                                                            
 comparison](https://zexi-dev.s3.us-east-1.amazonaws.com/charts/exec_0002/nvda_amd_comparison.png)\n**Figure     
 1:** Top-left and -right panels depict the 1-year closing price and scaled daily volume for NVDA and AMD.       
 Bottom-left and -right panels provide side-by-side views of valuation ratios and profitability/growth metrics   
 used in the comparison.\n\n## Conclusion\nOver the past year, AMD outpaced NVDA in price gain percentage but    
 remains well behind NVDA in absolute market cap and profitability metrics. NVDA commands premium multiples      
 justified by stronger margins and faster revenue growth, while AMD trades with a more aggressive trailing P/E   
 yet a significantly lower price/book ratio. The 2\u00d72 chart synthesizes these differences, providing         
 side-by-side context for investors weighing relative momentum, liquidity, and fundamental positioning across    
 the two leading semiconductor firms.\n\n### Sources\n[1] NVIDIA Corporation stock quote and fundamentals:       
 https://finance.yahoo.com/quote/NVDA\n[2] Advanced Micro Devices stock quote and fundamentals:                  
 https://finance.yahoo.com/quote/AMD"                                                                            
 }                                                                                                               
    ID: call_FCqQaZAVs3POgBVwUqLFdkcb                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Wrote 3166 bytes to /results/nvidia_amd_comparison.md                                                           
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: write_todos                                                                                       
    Args: {                                                                                                      
   "todos": [                                                                                                    
     {                                                                                                           
       "content": "Collect the past year of price, volume, and fundamental data for NVDA and AMD via yfinance",  
       "status": "completed"                                                                                     
     },                                                                                                          
     {                                                                                                           
       "content": "Produce a 2x2 chart comparing price, volume, and key fundamentals for both stocks",           
       "status": "completed"                                                                                     
     },                                                                                                          
     {                                                                                                           
       "content": "Draft a professional comparison report summarizing findings and cite data sources",           
       "status": "completed"                                                                                     
     }                                                                                                           
   ]                                                                                                             
 }                                                                                                               
    ID: call_oJnMCmp3KDDi2Lo7islYwhmf                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
 Updated todo list to [{'content': 'Collect the past year of price, volume, and fundamental data for NVDA and    
 AMD via yfinance', 'status': 'completed'}, {'content': 'Produce a 2x2 chart comparing price, volume, and key    
 fundamentals for both stocks', 'status': 'completed'}, {'content': 'Draft a professional comparison report      
 summarizing findings and cite data sources', 'status': 'completed'}]                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
                                                                                                                 
 🔧 Tool Call: read_file                                                                                         
    Args: {                                                                                                      
   "file_path": "results/task_request.md",                                                                       
   "offset": 1,                                                                                                  
   "limit": 100                                                                                                  
 }                                                                                                               
    ID: call_lcdWGpjBucl6wvN7jCB7xajC                                                                            
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭──────────────────────────────────────────────── 🔧 Tool Output ─────────────────────────────────────────────────╮
      1→Compare the stock price of Nvidia and AMD over the past year and create a 2x2 chart showing price,       
 volume, and key fundamental data comparison.                                                                    
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭───────────────────────────────────────────────────── 📝 AI ─────────────────────────────────────────────────────╮
 Delivered a comprehensive comparison of NVIDIA vs. AMD covering 12-month price movement, volume, and            
 fundamentals. Key takeaways:                                                                                    
 - Price: NVDA gained ~28% vs. AMD’s ~59% over the past year, with NVDA’s trend smoother and AMD’s moves more    
 volatile.                                                                                                       
 - Volume: NVDA averages ~223M shares/day versus AMD’s ~49M, which helps explain their differing intraday price  
 behavior.                                                                                                       
 - Fundamentals: NVDA trades at lower trailing/forward P/E and a much higher P/B multiple, but it also posts far 
 superior profit margins (53% vs. 10%), gross margins, and revenue growth.                                       
                                                                                                                 
 Created a 2×2 visualization (price, volume, valuation ratios, profitability/growth) and saved it under          
 `results/nvda_amd_comparison.png` (embedded in the report). The full textual comparison with citations and the  
 chart is available in `/results/nvidia_amd_comparison.md`.                                                      
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
# Display sandbox file tree AFTER agent execution
print("=" * 50)
print("Sandbox File Tree (AFTER)")
print("=" * 50)
print("./")
print_sandbox_tree(session.sandbox)
==================================================
Sandbox File Tree (AFTER)
==================================================
./
├── code/
│   ├── exec_0001.py
│   ├── exec_0002.py
│   └── exec_0003.py
├── data/
│   ├── amd_info.json
│   ├── nvda_info.json
│   └── nvidia_amd_history.json
├── mcp_servers/
│   ├── tickertick_mcp_server.py
│   └── yfinance_mcp_server.py
├── results/
│   ├── nvda_amd_comparison.png
│   ├── nvidia_amd_comparison.md
│   └── task_request.md
└── tools/
    ├── __pycache__/
    │   ├── __init__.cpython-312.pyc
    │   ├── mcp_client.cpython-312.pyc
    │   └── yfinance.cpython-312.pyc
    ├── docs/
    │   ├── tickertick/
    │   │   ├── get_broad_ticker_news.md
    │   │   ├── get_curated_news.md
    │   │   ├── get_entity_news.md
    │   │   ├── get_news_for_multiple_tickers.md
    │   │   ├── get_news_from_source.md
    │   │   ├── get_ticker_news.md
    │   │   └── search_tickers.md
    │   └── yfinance/
    │       ├── compare_financials.md
    │       ├── compare_valuations.md
    │       ├── get_analyst_recommendations.md
    │       ├── get_balance_sheet.md
    │       ├── get_cash_flow.md
    │       ├── get_company_info.md
    │       ├── get_dividends_and_splits.md
    │       ├── get_earnings_data.md
    │       ├── get_earnings_dates.md
    │       ├── get_income_statement.md
    │       ├── get_insider_roster.md
    │       ├── get_insider_transactions.md
    │       ├── get_institutional_holders.md
    │       ├── get_multiple_stocks_dividends.md
    │       ├── get_multiple_stocks_earnings.md
    │       ├── get_multiple_stocks_history.md
    │       ├── get_mutualfund_holders.md
    │       ├── get_news.md
    │       ├── get_options_chain.md
    │       ├── get_stock_history.md
    │       └── get_sustainability_data.md
    ├── __init__.py
    ├── mcp_client.py
    ├── tickertick.py
    └── yfinance.py
# Display any images generated by the agent
display_sandbox_images(session.sandbox, "results")
📊 results/nvda_amd_comparison.png



✅ Displayed 1 image(s)
# Display code file generated by agent
print("./")
print_sandbox_tree(session.sandbox, path="code/")
./
├── exec_0001.py
├── exec_0002.py
└── exec_0003.py
# Display results generated by agent
print("./")
print_sandbox_tree(session.sandbox, path="results/")
./
├── nvda_amd_comparison.png
├── nvidia_amd_comparison.md
└── task_request.md

Export Sandbox Files

Export all files from the sandbox to your local filesystem for inspection or archival.

# Export all sandbox files to local filesystem
# This downloads code/, data/, and results/ directories with timestamp organization
export_result = export_sandbox_files(session.sandbox)
 
# Dump agent messages to the same output directory for debugging
if export_result.success:
    messages_path = dump_messages(result["messages"], export_result.output_directory)
    print(f"Messages saved to: {messages_path}")
 
# Display the summary
print(export_result.summary())
📂 Discovering files in 'code'...
   Found 3 file(s)
📂 Discovering files in 'data'...
   Found 3 file(s)
📂 Discovering files in 'results'...
   Found 3 file(s)

✅ Export completed successfully!
   Exported 9 file(s) to: output/20251201_045302
Messages saved to: /Users/chen/projects/open-ptc-agent/output/20251201_045302/messages.json

Export Summary (20251201_045302)
============================================================
Output Directory: /Users/chen/projects/open-ptc-agent/output/20251201_045302
Total Files: 9
Successfully Exported: 9
Failed: 0
Total Size: 301.39 KB

Directories Processed:
  - code
  - data
  - results
# Alternative: Export only specific directories
# Uncomment and run if you only want to export results
# export_result = export_sandbox_files(
#     session.sandbox,
#     directories=['results'],
#     output_base="my_exports",
#     timestamp_format="%Y-%m-%d_%H-%M"
# )
# print(export_result.summary())
# Cleanup session when done
await session.cleanup()
2025-12-01 04:53:09 [info     ] Cleaning up session            conversation_id=demo-notebook
2025-12-01 04:53:09 [info     ] Cleaning up sandbox            sandbox_id=00863413-e271-4844-94b4-f7fe0713c78b
2025-12-01 04:53:09 [info     ] Sandbox deleted                sandbox_id=00863413-e271-4844-94b4-f7fe0713c78b
2025-12-01 04:53:09 [info     ] Disconnecting from all MCP servers
2025-12-01 04:53:09 [info     ] Disconnecting from MCP server  server=tickertick
2025-12-01 04:53:09 [info     ] Disconnecting from MCP server  server=yfinance
2025-12-01 04:53:09 [info     ] Session cleaned up             conversation_id=demo-notebook